„Fajhő mérése” változatai közötti eltérés
73. sor: | 73. sor: | ||
A módszer elsősorban folyadékok fajhőjének meghatározására alkalmas. Használható azonban szilárd anyagok esetén is, ha azokat folyadékba helyezve a folyadékkal együtt melegítjük. | A módszer elsősorban folyadékok fajhőjének meghatározására alkalmas. Használható azonban szilárd anyagok esetén is, ha azokat folyadékba helyezve a folyadékkal együtt melegítjük. | ||
+ | ===A kaloriméter hőkapacitása és a hőmérsékleti korrekció=== | ||
+ | |||
+ | A keveréssel és az elektromos melegítéssel történő fajhőmérés esetén eddig feltételeztük, hogy a folyamat a környezettől hőtanilag jól elszigetelve, hőveszteség nélkül játszódik le. Ennek a feltételnek a teljesítése érdekében a hőközlés a környezettől jó hőszigetelő anyagokkal elválasztott edényben, kaloriméterben történik. (Egy keverési és egy elektromos kaloriméter vázlatát az 1. ábra mutatja.) | ||
+ | Ennek ellenére a hőveszteség nélküli mérés mégsem valósítható meg, elsősorban az alábbi két ok miatt: az egyik az, hogy az edény hőmérséklete is változik a mérés közben és ez is energiát igényel, a másik pedig, hogy bármilyen jó hőszigetelést is alkalmazunk a környezet felé mindig történik energiaátadás. Ez a két ok (hiba) a kaloriméter hőkapacitásának figyelembevételével illetve a hőveszteségek becslésével csökkenthető. | ||
+ | |||
+ | ==== A kaloriméter hőkapacitása ==== | ||
</wlatex> | </wlatex> |
A lap 2012. augusztus 28., 23:03-kori változata
Szerkesztés alatt!
A mérés célja:
- elmélyíteni a hallgatók fajhővel kapcsolatos ismereteit,
- megismertetni a hallgatókat a fajhőmérés két módszerével.
Ennek érdekében:
- összefoglaljuk a fajhő mérésével kapcsolatos ismereteket, ismertetjük a keverési kaloriméterrel ill. az elektromos fűtésű kaloriméterrel történő fajhőmérést,
- a gyakorlat során megmérjük néhány anyag fajhőjét.
Tartalomjegyzék |
Elméleti összefoglaló
Egy anyag belső energiája () a rajta végzett makroszkopikus munka (), vagy egy másik testtel létrejött kontaktus során molekuláris szinten lezajló energia átadás () útján változtatható meg. Ezt a tapasztalatot rögzíti a hőtan I. főtétele:
ahol a belső energia megváltozása, a testen végzett makroszkopikus munka, pedig a molekuláris mechanizmussal a testnek átadott energia, amit \textit{hőnek} (hőmennyiségnek) nevezünk. Ha egy testtel hőt közlünk (pl. elektromos fűtőtesttel melegítjük), akkor belső energiája és ezzel együtt hőmérséklete is megváltozik. A tapasztalat szerint nem túl nagy hőmennyiség közlése esetén a bekövetkező hőmérséklet-változás () egyenesen arányos a közölt hővel (), fordítottan arányos a vizsgált anyag tömegével () és függ a vizsgált anyag minőségétől is:
ahol az anyagra jellemző állandót fajhőnek nevezzük. Számértéke megadja, hogy egységnyi tömegű anyaggal mennyi hőt kell közölnünk ahhoz, hogy hőmérsékletét 1 K-nel megváltoztassuk. Mértékegysége . A testtel közölt hő azonban nemcsak a belső energia megváltoztatására, hanem munkavégzésre is fordítódhat:
Ennek megfelelően a fajhő:
Mivel a munkavégzés függ a folyamat körülményeitől, a fajhő csak akkor határozható meg egyértelműen, ha a hőközlés folyamatát pontosan rögzítjük. Ennek megfelelően, elvileg igen sokféle fajhő definiálható, a gyakorlatban ezek közül kettőt használnak, az állandó térfogaton () és az állandó nyomáson () mért fajhőt. Gázok esetében e kétféle fajhő számottevően különböző, szilárd és folyékony anyagoknál közel azonos értékű. A fajhő – különösen alacsony hőmérsékleten – a hőmérséklettől is függ. A mérés során szilárd anyagokat vizsgálunk amelyeknek fajhője a vizsgált hőmérsékleteken állandónak tekinthető és amelyeknél a és eltérése is elhanyagolható. Ezért a továbbiakban egyszerűen "fajhő"-ről beszélünk és az index nélküli jelölést használunk. (Szigorúan véve -t mérjük.) A mérnöki gyakorlatban a hűtő- és fűtő berendezések és határoló szerkezetek hőtani viselkedésének egyik meghatározója az alkalmazott anyagok fajhője. Az anyagtudományban a fajhő mérésével bizonyos anyagszerkezeti változásokat – fázisátalakulásokat – követhetünk nyomon. A fajhő meghatározása a képlet alapján lehetséges. Megmérve a vizsgált anyag tömegét, az anyaggal közölt ill. a tőle elvont hő mennyiségét és a bekövetkezett hőmérsékletváltozást, a fajhő kiszámítható. A gyakorlatban sok esetben közvetlenül a testtel közölt hő és a hőmérsékletváltozás összefüggésére van szükség, így a fajhő helyett az adott testre jellemző mennyiséget használják, amelyet hőkapacitásnak neveznek. A összefüggés így a alakot ölti. A vizsgált anyaggal történő hőközlés két módszere terjedt el, a különböző hőmérsékletű anyagok összekeverésével ill. az elektromos fűtőtesttel történő hőközlés. Az alábbiakban ezen két módszer alapgondolatát ismertetjük.
Fajhőmérés keveréssel
A mérendő fajhőjű, tömegű, hőmérsékletű anyagot ismert paraméterekkel () rendelkező anyaggal – általában olyan folyadékkal, amely nem lép kémiai reakcióba a mérendő anyaggal – összekeverjük, majd megmérjük a beálló közös hőmérsékletet (). Feltéve, hogy a keverés során a két anyag között kizárólag hőátadás történik, a vizsgálandó anyag által felvett (vagy leadott) hő egyenlő az ismert anyag által felvett (vagy leadott) hővel, ezért
ami alapján az ismeretlen fajhő meghatározható. Ez a módszer elsősorban szilárd testek és folyadékok fajhőjének meghatározására alkalmas, de segítségével gázok állandó nyomáson mért fajhője is megmérhető. Ebben az esetben a vizsgált gázt cső-spirálon áramoltatják a folyadékon át. A gáz tömegének, hőmérsékletváltozásának valamint a mérő folyadék adatainak ismeretében a gáz állandó nyomáson mért fajhője () meghatározható. Az állandó nyomáson mért fajhő ismeretében az állandó térfogaton mért fajhő, () szintén meghatározható (pl. hangsebesség-méréssel).
Fajhőmérés elektromos energiaközléssel
Ennél a módszernél a vizsgált anyag (fajhője , tömege ) hőmérsékletét elektromos fűtőtest segítségével értékkel megnöveljük. Feltéve, hogy a fűtőtest által leadott energia teljes egészében a vizsgált anyag belső energiáját növeli:
amiből az UI fűtőteljesítmény, a melegítési idő, a vizsgált anyag tömege és a hőmérsékletváltozás ismeretében a fajhő meghatározható. A módszer elsősorban folyadékok fajhőjének meghatározására alkalmas. Használható azonban szilárd anyagok esetén is, ha azokat folyadékba helyezve a folyadékkal együtt melegítjük.
A kaloriméter hőkapacitása és a hőmérsékleti korrekció
A keveréssel és az elektromos melegítéssel történő fajhőmérés esetén eddig feltételeztük, hogy a folyamat a környezettől hőtanilag jól elszigetelve, hőveszteség nélkül játszódik le. Ennek a feltételnek a teljesítése érdekében a hőközlés a környezettől jó hőszigetelő anyagokkal elválasztott edényben, kaloriméterben történik. (Egy keverési és egy elektromos kaloriméter vázlatát az 1. ábra mutatja.) Ennek ellenére a hőveszteség nélküli mérés mégsem valósítható meg, elsősorban az alábbi két ok miatt: az egyik az, hogy az edény hőmérséklete is változik a mérés közben és ez is energiát igényel, a másik pedig, hogy bármilyen jó hőszigetelést is alkalmazunk a környezet felé mindig történik energiaátadás. Ez a két ok (hiba) a kaloriméter hőkapacitásának figyelembevételével illetve a hőveszteségek becslésével csökkenthető.