„Optikai heterodin detektálás” változatai közötti eltérés
Lenk (vitalap | szerkesztései) |
Lenk (vitalap | szerkesztései) |
||
32. sor: | 32. sor: | ||
ahol E<sub>0</sub> az elektromos hullám amplitúdója, '''k''' a hullámszám vektor, $\omega {{=}} 2\pi \cdot f$ az elektro-mágneses hullám körfrekvenciája, „f” pedig a frekvenciája. Egyszerű megfontolásokból a hullám terjedési sebessége k-val és $\omega $-val kifejezhető: | ahol E<sub>0</sub> az elektromos hullám amplitúdója, '''k''' a hullámszám vektor, $\omega {{=}} 2\pi \cdot f$ az elektro-mágneses hullám körfrekvenciája, „f” pedig a frekvenciája. Egyszerű megfontolásokból a hullám terjedési sebessége k-val és $\omega $-val kifejezhető: | ||
{{eq|{{c {{=}} \frac{\omega }{\left| k \right|}}}|eq:2|(2)}} | {{eq|{{c {{=}} \frac{\omega }{\left| k \right|}}}|eq:2|(2)}} | ||
− | A „k” helyett a gyakorlatban $\lambda {{=}} \frac{2\pi}{k}$-t szokás használni, amelyet hullámhossznak nevezünk. Így az egyenlet ismertebb alakjában $c {{=}} \lambda \cdot f | + | A „k” helyett a gyakorlatban $\lambda {{=}} \frac{2\pi}{k}$-t szokás használni, amelyet hullámhossznak nevezünk. Így az egyenlet ismertebb alakjában $c {{=}} \lambda \cdot f$. Az (1) egyenletből látszik $\lambda$ szemléletes jelentése is: azt a '''k''' vektor irányában mért legkisebb távolságot jelenti, amely szerint a térerősség periodikusan változik. |
==Mérési feladatok== | ==Mérési feladatok== |
A lap 2012. november 10., 06:36-kori változata
Tartalomjegyzék |
Szerkesztés alatt!
Elméleti összefoglaló
A hullám fogalma – a fény mint hullám
A fény, mint ismeretes, az elektromágneses tér hullámjelensége. Jellemző rezgési frekvenciája a 1014 Hz körüli tartományba esik. Az a fizikai mennyiség, amelynek terjedését egyszerűen fénynek nevezzük, az elektromos és mágneses térerősség. Tehát a fényben az elektromos és a mágneses tér változásai terjednek. Tekintsünk egy, a tárgyalás szempontjából egyszerű, lineárisan polarizált harmonikus síkhullámot. A síkhullám elnevezés onnan ered, hogy az azonos térerősségű pontok egy adott pillanatban egy síkon helyezkednek el. A síkhullám kifejezése:
![\[E\left( {{\bf{r}},t} \right) {{=}} {E_0}\cos \left( {\omega t - {\bf{kr}}} \right)\]](/images/math/6/0/b/60b98f9ce1b43f8beac900bce40ea117.png)
ahol E0 az elektromos hullám amplitúdója, k a hullámszám vektor, az elektro-mágneses hullám körfrekvenciája, „f” pedig a frekvenciája. Egyszerű megfontolásokból a hullám terjedési sebessége k-val és
-val kifejezhető:
![\[{{c = \frac{\omega }{\left| k \right|}}}\]](/images/math/5/d/4/5d492d4631dcb1bb6a6bcf00487e759c.png)
A „k” helyett a gyakorlatban -t szokás használni, amelyet hullámhossznak nevezünk. Így az egyenlet ismertebb alakjában
. Az (1) egyenletből látszik
szemléletes jelentése is: azt a k vektor irányában mért legkisebb távolságot jelenti, amely szerint a térerősség periodikusan változik.
Mérési feladatok