„Optikai heterodin detektálás” változatai közötti eltérés
Lenk (vitalap | szerkesztései) |
Lenk (vitalap | szerkesztései) |
||
34. sor: | 34. sor: | ||
A „k” helyett a gyakorlatban $\lambda {{=}} \frac{2\pi}{k}$-t szokás használni, amelyet hullámhossznak nevezünk. Így az egyenlet ismertebb alakjában $c {{=}} \lambda \cdot f$. Az (1) egyenletből látszik $\lambda$ szemléletes jelentése is: azt a '''k''' vektor irányában mért legkisebb távolságot jelenti, amely szerint a térerősség periodikusan változik. | A „k” helyett a gyakorlatban $\lambda {{=}} \frac{2\pi}{k}$-t szokás használni, amelyet hullámhossznak nevezünk. Így az egyenlet ismertebb alakjában $c {{=}} \lambda \cdot f$. Az (1) egyenletből látszik $\lambda$ szemléletes jelentése is: azt a '''k''' vektor irányában mért legkisebb távolságot jelenti, amely szerint a térerősség periodikusan változik. | ||
+ | ===Doppler-effektus=== | ||
+ | Tegyük fel, hogy az (1) szerinti monokromatikus síkhullámot egy „K” koordináta-rendszerben írtuk fel. Ha ezt a síkhullámot a K-hoz képest '''v'''(t) pillanatnyi sebességgel mozgó K' rendszerből figyeljük, akkor a hullám K-beli frekvenciájától különböző frekvenciájú hullámot fogunk észlelni. Válasszuk úgy a K és K' rendszert, hogy -ban az origók egybe essenek. Ekkor a K-beli koordinátát K'-beli koordinátákkal kifejezhetjük: | ||
+ | $${\bf{r}} = \int\limits_0^t {{\bf{v}}(\tau ){\rm{d}}\tau } + {\bf{r'}}$$ | ||
+ | (3) | ||
==Mérési feladatok== | ==Mérési feladatok== | ||
A lap 2012. november 10., 06:38-kori változata
Tartalomjegyzék |
Szerkesztés alatt!
Elméleti összefoglaló
A hullám fogalma – a fény mint hullám
A fény, mint ismeretes, az elektromágneses tér hullámjelensége. Jellemző rezgési frekvenciája a 1014 Hz körüli tartományba esik. Az a fizikai mennyiség, amelynek terjedését egyszerűen fénynek nevezzük, az elektromos és mágneses térerősség. Tehát a fényben az elektromos és a mágneses tér változásai terjednek. Tekintsünk egy, a tárgyalás szempontjából egyszerű, lineárisan polarizált harmonikus síkhullámot. A síkhullám elnevezés onnan ered, hogy az azonos térerősségű pontok egy adott pillanatban egy síkon helyezkednek el. A síkhullám kifejezése:
ahol E0 az elektromos hullám amplitúdója, k a hullámszám vektor, az elektro-mágneses hullám körfrekvenciája, „f” pedig a frekvenciája. Egyszerű megfontolásokból a hullám terjedési sebessége k-val és -val kifejezhető:
A „k” helyett a gyakorlatban -t szokás használni, amelyet hullámhossznak nevezünk. Így az egyenlet ismertebb alakjában . Az (1) egyenletből látszik szemléletes jelentése is: azt a k vektor irányában mért legkisebb távolságot jelenti, amely szerint a térerősség periodikusan változik.
Doppler-effektus
Tegyük fel, hogy az (1) szerinti monokromatikus síkhullámot egy „K” koordináta-rendszerben írtuk fel. Ha ezt a síkhullámot a K-hoz képest v(t) pillanatnyi sebességgel mozgó K' rendszerből figyeljük, akkor a hullám K-beli frekvenciájától különböző frekvenciájú hullámot fogunk észlelni. Válasszuk úgy a K és K' rendszert, hogy -ban az origók egybe essenek. Ekkor a K-beli koordinátát K'-beli koordinátákkal kifejezhetjük:
(3)
Mérési feladatok