„Optikai heterodin detektálás” változatai közötti eltérés

A Fizipedia wikiből
a
a
161. sor: 161. sor:
 
A mérést az [[#fig:1|1. ábra]] szerinti interferométerrel végezzük el, amelyben természetesen csak akkor kapunk eredményt, ha x<sub>0</sub> elég nagy. Amennyiben $x_0 < \lambda/8$, akkor nullahelyek nem lépnek fel, így ez az eljárás nem alkalmazható. (Ekkor csak a heterodin jel spektrális vizsgálata adhat információt az amplitudóról.) Ezért a heterodin jel nullátmeneteinek számlálásával az alkalmazott lézerfény hullámhosszánál ($\lambda_{He-Ne} {{=}} 633 nm$) nagyobb amplitúdójú rezgéseket lehet csupán vizsgálni. Ha a nullátmenetek között eltelt idők reciprokát képezzük, akkor ezek úgy tekinthetők, mint a t<sub>i</sub> és t<sub>i+1</sub> időpontok közötti pillanatnyi frekvencia, így ezen időközök $\Delta \tau_{i} {{=}} t_{i+1}-t_i$
 
A mérést az [[#fig:1|1. ábra]] szerinti interferométerrel végezzük el, amelyben természetesen csak akkor kapunk eredményt, ha x<sub>0</sub> elég nagy. Amennyiben $x_0 < \lambda/8$, akkor nullahelyek nem lépnek fel, így ez az eljárás nem alkalmazható. (Ekkor csak a heterodin jel spektrális vizsgálata adhat információt az amplitudóról.) Ezért a heterodin jel nullátmeneteinek számlálásával az alkalmazott lézerfény hullámhosszánál ($\lambda_{He-Ne} {{=}} 633 nm$) nagyobb amplitúdójú rezgéseket lehet csupán vizsgálni. Ha a nullátmenetek között eltelt idők reciprokát képezzük, akkor ezek úgy tekinthetők, mint a t<sub>i</sub> és t<sub>i+1</sub> időpontok közötti pillanatnyi frekvencia, így ezen időközök $\Delta \tau_{i} {{=}} t_{i+1}-t_i$
 
mérésével a pillanatnyi sebesség abszolút értéke is meghatározható az alábbi összefüggés alapján (de az előjele nem):
 
mérésével a pillanatnyi sebesség abszolút értéke is meghatározható az alábbi összefüggés alapján (de az előjele nem):
{{eq|\frac{1}{2\Delta \tau_i} {{=}} \left |f_i\right | \sim  \frac{2\left |v\right |}{\lambda }|eq:40|(40)}}-->
+
<!--{{eq|\frac{1}{2\Delta \tau_i} {{=}} \left |f_i\right | \sim  \frac{2\left |v\right |}{\lambda }|eq:40|(40)}}-->
  
 
==Mérési feladatok==
 
==Mérési feladatok==

A lap 2012. november 24., 09:09-kori változata


Tartalomjegyzék


Szerkesztés alatt!

Elméleti összefoglaló

A hullám fogalma – a fény mint hullám

A fény, mint ismeretes, az elektromágneses tér hullámjelensége. Jellemző rezgési frekvenciája a 1014 Hz körüli tartományba esik. Az a fizikai mennyiség, amelynek terjedését egyszerűen fénynek nevezzük, az elektromos és mágneses térerősség. Tehát a fényben az elektromos és a mágneses tér változásai terjednek. Tekintsünk egy, a tárgyalás szempontjából egyszerű, lineárisan polarizált harmonikus síkhullámot. A síkhullám elnevezés onnan ered, hogy az azonos térerősségű pontok egy adott pillanatban egy síkon helyezkednek el. A síkhullám kifejezése:

 
\[{{E\left( \mathbf{r},t \right) = {E_0}\cos \left( \omega t - \mathbf{kr} \right)}}\]
(1)

ahol E0 az elektromos hullám amplitúdója, k a hullámszám vektor, \setbox0\hbox{$\omega {{=}} 2\pi \cdot f$}% \message{//depth:\the\dp0//}% \box0% az elektro-mágneses hullám körfrekvenciája, „f” pedig a frekvenciája. Egyszerű megfontolásokból a hullám terjedési sebessége k-val és \setbox0\hbox{$\omega $}% \message{//depth:\the\dp0//}% \box0%-val kifejezhető:

 
\[{{c = \frac{\omega }{\left| \mathbf{k} \right|}}}\]
(2)

A „k” helyett a gyakorlatban \setbox0\hbox{$\lambda {{=}} \frac{2\pi}{k}$}% \message{//depth:\the\dp0//}% \box0%-t szokás használni, amelyet hullámhossznak nevezünk. Így az egyenlet ismertebb alakjában \setbox0\hbox{$c {{=}} \lambda \cdot f$}% \message{//depth:\the\dp0//}% \box0%. Az (1) egyenletből látszik \setbox0\hbox{$\lambda$}% \message{//depth:\the\dp0//}% \box0% szemléletes jelentése is: azt a k vektor irányában mért legkisebb távolságot jelenti, amely szerint a térerősség periodikusan változik.

Doppler-effektus

Tegyük fel, hogy az (1) szerinti monokromatikus síkhullámot egy „K” koordináta-rendszerben írtuk fel. Ha ezt a síkhullámot a K-hoz képest v(t) pillanatnyi sebességgel mozgó K' rendszerből figyeljük, akkor a hullám K-beli frekvenciájától különböző frekvenciájú hullámot fogunk észlelni. Válasszuk úgy a K és K' rendszert, hogy -ban az origók egybe essenek. Ekkor a K-beli koordinátát K'-beli koordinátákkal kifejezhetjük:

 
\[\mathbf{r} = \int\limits_0^t \mathbf{v}(\tau) d\tau  + \mathbf{r'}\]
(3)

Ezt beírva az (1) egyenletbe, a hullám K'-beli alakját nyerjük:

 
\[E\left( \mathbf{r'},t \right) = {E_0}\cos \left( \varphi (\mathbf{r'},t) \right)= {E_0}\cos \left( \omega t - \mathbf{k} \cdot \int\limits_0^t \mathbf{v}(\tau)d\tau - \mathbf{k} \cdot \mathbf{r'} \right)\]
(4)

Definíció szerint a körfrekvencia a fázis (\setbox0\hbox{$\phi$}% \message{//depth:\the\dp0//}% \box0%) idő szerinti parciális deriváltja:

 
\[\omega '(t) \equiv \frac{\partial \varphi }{\partial t} = \omega  - \mathbf{k} \cdot \mathbf{v}(t)\]
(5)

tehát a két rendszer relatív sebességétől függően a körfrekvencia megváltozik, mégpedig a két vonatkoztatási rendszer relatív sebességének pillanatnyi értéke szerint. (Az egyszerűség kedvéért v és ω időfüggését a továbbiakban nem jelöljük.) Ezt a jelenséget felfedezőjéről Doppler-effektusnak nevezik. A jelenség az akusztikában már XIX században ismert és igazolt volt. (A fenti eredmény csak közelítő jellegű, mivel a Galilei-féle relativitás elvének megfelelő transzformáció, amellyel az egyik koordináta rendszerből áttérünk a másikba, csak a fénysebességhez képest kis v sebességek esetében igaz. A pontos tárgyalásnál a Galilei-féle relativitást fel kell cserélni az Einstein-féle relativitás elvével és ennek megfelelően a két rendszer transzformációját Lorentz-transzformációval kell leírni, ld. a függeléket. A gyakorlatban szinte mindig teljesül az a feltétel, hogy v << c, ahol „c” a fénysebesség, ezért a kapott eredmények nagyon nagy pontossággal érvényben maradnak.) Felhasználva a

 
\[k = \frac{2\pi }{\lambda }     \qquad         \omega = 2\pi f\]
(6)

egyenleteket, a körfrekvenciáról áttérve frekvenciára kapjuk:

 
\[{{f' = f - \frac{\left| \mathbf{v} \right|}{\lambda }\cos \vartheta}}\]
(7)

ahol \setbox0\hbox{$\cos \vartheta$}% \message{//depth:\the\dp0//}% \box0% a k és v vektor által bezárt szög koszinusza. Speciálisan, ha k és v azonos irányú, akkor \setbox0\hbox{$\cos \vartheta$}% \message{//depth:\the\dp0//}% \box0% , így:

 
\[{{f' = f - \frac{\left| \mathbf{v} \right|}{\lambda }}}\]
(8)

és ha ellentétes irányúak, akkor \setbox0\hbox{$\cos \vartheta {{=}} -1$}% \message{//depth:\the\dp0//}% \box0% , melyből:

 
\[{{f' = f + \frac{\left| \mathbf{v} \right|}{\lambda }}}\]
(9)

Optikai keverés

Tekintsünk két különböző frekvenciájú (\setbox0\hbox{$\omega_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\omega_2$}% \message{//depth:\the\dp0//}% \box0%), és azonos terjedési irányú (x) elektromágneses síkhullámot, ahol az egyik körfrekvencia időfüggő: \setbox0\hbox{$\omega_2(t)$}% \message{//depth:\the\dp0//}% \box0%. Ebben az esetben az elektromos térerősségek a következőképp írhatók fel:

 
\[{{{E_1} = {E_{10}}\cos \left( {{\omega _1}t - {k_1}x} \right)}}\]
(10)
 
\[{E_2} = E_{20}\cos \left( \int\limits_0^t \omega _2(\tau )d\tau - \int\limits_t^{t - x/c} \omega _2(\tau )d\tau + \varphi \right)=E_{20}\cos \left( \int\limits_t^{t - x/c} \omega _2(\tau )d\tau + \varphi\right)\]
(11)

ahol „c” a fénysebesség, \setbox0\hbox{$\varphi$}% \message{//depth:\the\dp0//}% \box0% pedig egy konstans fázistolás. Az eredő elektromágneses tér a kettő összege:

 
\[E = E_1 + E_2 = E_{10}\cos \left(\omega_1t - k_1x\right) + E_{20}\cos\left(\int\limits_t^{t - x/c} \omega _2(\tau )d\tau + \varphi\right)\]
(12)

Helyezzünk az eredő tér egy adott pontjába (x) fényérzékelőt. Az érzékelő által szolgáltatott áram \setbox0\hbox{${i_D}\sim P$}% \message{//depth:\the\dp0//}% \box0%, ahol „P” a detektorra eső fényteljesítmény. A fényteljesítmény viszont az elektromos térerősség négyzetével arányos:

 
\[P\sim E^2 = E_{10}^2 \cos^2\left(\omega_1t - k_1x\right) + E_{20}\cos^2\left(\int\limits_0^{t-x/c}\omega_2(\tau)d\tau + \varphi \right)+2E_{10}E_{20}\cos\left(\omega_1t - k_1x\right)\cos\left(\int\limits_{0}^{t-x/c}\omega_2(\tau)d\tau + \varphi\right)\]
(13)

Ha ω2-t ω1-ből Doppler-eltolással állítjuk elő, és az alkalmazott sebességek nem relativisztikusak akkor ω2 csak nagyon kicsit tér el a konstans ω1-től. A továbbiakban egyszerűbb, ha az ω2 időfüggését egy külön \setbox0\hbox{$\Delta \omega (t)$}% \message{//depth:\the\dp0//}% \box0% taggal kezeljük, amely jóval kisebb ω1-nél.

 
\[\omega_2(t) = \omega_1 + \Delta\omega(t)\]
(14)

Δω függését a koordinátarendszerek sebességétől lásd a következő fejezetben. Ekkor

 
\[\int\limits_0^{t-x/c}\omega_2(\tau)d\tau = \omega_1(t-x/c) + \int\limits_0^{t-x/c}\Delta\omega(\tau)d\tau\]
(15)

Behelyettesítve (13)-ba a fenti összefüggést, és felhasználva, hogy

 
\[{{\cos \alpha  \cdot \cos \beta  = \frac{1}{2}\left( {\cos \left( {\alpha  + \beta } \right) + \cos \left( {\alpha  - \beta } \right)} \right)}}\]
(16)

iD alakja a következő:

 
\[i_D \sim E_{10}^2\cos^2\left(\omega_1t - k_1x\right)+ E_{20}^2cos^2\left(\omega_1t - k_1x + \int\limits_0^{t-x/c}\Delta\omega(\tau)d\tau - \varphi\right) + E_{10}E_{20}\cos\left[2\omega_1t - 2k_1x + \int\limits_0^{t-x/c}\Delta\omega(\tau)d\tau + \varphi\right] + \]
(17)
\[E_{10}E_{20}\cos\left[-\int\limits_0^{t-x/c}\Delta\omega(\tau)d\tau - \varphi\right]\]

A detektor a ráeső teljesítmény időátlagát méri. Mivel fény esetén \setbox0\hbox{$\omega_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\omega_2$}% \message{//depth:\the\dp0//}% \box0% ~1015 nagyságrendű, és ezt a frekvenciát a fényérzékelő nem képes követni, az első három tag iD kifejezésében kiátlagolódik. Felhasználva, hogy:

\[\left<\cos(x)\right> {{=}} 0\]
 
\[\left<\cos^2(x)\right> = \frac{1}{2}\]
(18)
\[\cos(-x) {{=}} \cos(x)\]

ahol < > az időátlagot jelenti. A detektor jelére azt kapjuk, hogy:

 
\[\left<i_D\right> \sim \frac{E_{10}^2}{2} + \frac{E_{20}^2}{2} + E_{10}E_{20}\cdot\cos\left(\int\limits_0^{t-x/c}\Delta\omega(\tau)d\tau + \varphi\right)\]
(19)

Az időátlagolást a fenti kifejezésben a fényhullám periódusidejének néhányszorosára végeztük el (ahogy a detektor is teszi), ezért ha \setbox0\hbox{$\omega_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\omega_2$}% \message{//depth:\the\dp0//}% \box0% elég közel esik egymáshoz, a (17) kifejezés negyedik tagja átlagolás után is megmarad, ugyanis az \setbox0\hbox{$\omega_1 - \omega_2$}% \message{//depth:\the\dp0//}% \box0% jóval nagyobb magánál \setbox0\hbox{$\omega_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\omega_2$}% \message{//depth:\the\dp0//}% \box0%-nél. Amennyiben a különbségi körfrekvencia olyan kicsi, hogy az ebből eredő változást már a fényérzékelő is képes követni, a detektor kimenő jelében megjelenik egy, a két fény körfrekvencia-különbségével változó jel, melynek amplitúdója a két térerősség amplitúdójának szorzata. Bevezetve az intenzitásokra az \setbox0\hbox{$E_{10}^2 = {I_1}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$E_{20}^2 = {I_2}$}% \message{//depth:\the\dp0//}% \box0% jelölést:

 
\[\left<i_D\right> \sim \frac{I_1}{2} + \frac{I_2}{2} + \sqrt{I_1 I_2}\cdot\cos\left(\int\limits_0^{t-x/c}\Delta\omega(\tau)d\tau + \varphi\right)\]
(20)

Az így kapott jel egyenáramú komponense a két fényhullám intenzitásának összegével arányos, ami e mérésben nem informatív, ezért elektronikus úton leszűrjük. A mért jel váltóáramú komponensét (iH) heterodin jelnek, az eljárást pedig heterodin keverésnek nevezzük:

 
\[i_H \equiv \sqrt{I_1 I_2}\cdot\cos\left(\int\limits_0^{t-x/c}\Delta\omega(\tau)d\tau + \varphi\right)\]
(21)

Az optikai keverésnél az intenzitások közül az egyiket elektromos analógia alapján lokáloszcillátornak nevezik (I1), a másikat pedig jelintenzitásnak (I2). Fénydetektálás szempontjából az optikai keverésnek azért van nagy jelentősége, mert a keletkező heterodin jel frekvenciája jól meghatározott értékű, valamint megfelelő nagyságú lokáloszcillátor-intenzitás segítségével a \setbox0\hbox{$\sqrt {{I_1}{I_2}} $}% \message{//depth:\the\dp0//}% \box0% szorzat még kis I2 mellett is megnövelhető. Így az optikai keverés kis fényintenzitások mérésének egyik alkalmas módszereként kínálkozik. Ha például egy detektor érzékenysége 1 mW, és ennél kisebb jelet, mondjuk 10 μW-ot akarunk vele mérni, akkor a 10 μW-os jelet összekeverve egy 1 W-os lokál-oszcillátor jelével, akkor kb. 3 mW-os kevert jel keletkezik, amely már mérhető az adott detektorral. A dolog szépséghibája, hogy a detektoron megjelenik egy nagy, jelen esetben 1 W-os egyenáramú jel is, ami az érzékelőt, vagy az elekronikus erősítőt telítésbe viheti.

Optikai keverés megvalósítása Doppler-effektus felhasználásával

Az optikai keverés megvalósításához egy interferométerre van szükség. Az 1. ábrán látható Michelson-interferométerben a két nyaláb a karokból a féligáteresztő lemezen egyesül úgy, hogy a detektort azonos ponton találja el, és irányuk is pontosan megegyezik (azaz k1 és k2 párhuzamos).

1. ábra. Optikai keverés megvalósítása Michelson-interferométerrel

Ha ugyanis k1−k2-nek van a terjedési irányra merőleges komponense (α ≠ 0, ld. 2. ábra), a detektor síkjában egy interferencia csíkrendszer alakul ki, ami miatt a heterodin jel kiátlagolódhat. Azért, hogy ezt elkerüljük, a detektor méretének (d) kisebbnek kell lennie a kialakuló interferencia kép fél periódusánál:

 
\[d < \frac{1}{4\cdot k_1\cdot \sin\left (\alpha/2\right )}\]
(22)

ahol felhasználtuk, hogy \setbox0\hbox{$k_1\approx k_2$}% \message{//depth:\the\dp0//}% \box0%. Mivel a detektor mérete általában adott, az előző kifejezés a nyalábok egymáshoz viszonyított irányának beállítására ad egy erős kényszert: ha a detektor mérete d = 1 mm, λ = 633 nm, akkor α < 0,003°, ami 20 m-en 1 mm távolságnak felel meg!

2. ábra. Az optikai keverésnél fellépő interferencia kép és a detektor méretének (d) viszonya, abban az esetben, ha a két nyaláb (k1 és k2) nem párhuzamos (α ≠ 0).

Az optikai keveréshez szükséges kismértékű frekvencia eltérést a Doppler-effektus révén érhetjük el: az interferométer egyik karjában lévő tükör (#2, ld. 1. ábra) önmagával párhuzamos, nyalábra merőleges, „v” sebességgel történő mozgatása esetén a tükörre eső fény frekvenciája a doppler effektus miatt megváltozik. A mozgó tükör az álló forrásból érkező „f” frekvenciájú lézernyalábot f'-nek érzékeli:

 
\[f' = f - \frac{v}{\lambda}\]
(23)

ahol a sebesség előjeles mennyiség (v > 0, ha a tükör a forrástól távolodik). A tükör ilyen frekvenciájú fényt ver vissza, azonban a detektor egy másik frekvenciát (f ) érzékel, ugyanis a tükör hozzá képest egy mozgó forrás. A mozgó tükör karjából érkező fény frekvenciája a detektornál tehát:

 
\[f" = f' - \frac{v}{\lambda} = f - \frac{2v}{\lambda} \qquad \Leftrightarrow \qquad \omega_2 = \omega_1 - k_1 \cdot 2v\]
(24)

A frekvenciák közötti különbség tehát:

 
\[\Delta \omega = -2\cdot k_1\cdot v\]
(25)

ahol \setbox0\hbox{$\omega_1 {{=}} 2\cdot \pi f$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\omega_2 {{=}} 2\cdot \pi \cdot f"$}% \message{//depth:\the\dp0//}% \box0%. Ebből a heterodin frekvencia:

 
\[f_H \equiv f' - f" = \frac{2\cdot v(t)}{\lambda}\]
(26)

A másik nyalábnak a frekvenciája változatlan, így a keletkező heterodin jel (21) szerint:

 
\[i_H \equiv \sqrt{I_1I_2}\cdot \cos\left [\int\limits_0^{t-x/c}k_1\cdot 2v(\tau)d\tau - \varphi \right ]\]
(27)

A sebesség időfüggése szempontjából két speciális esetet érdemes megvizsgálni. Az egyik az egyenes vonalú egyenletes sebességű mozgás. Ekkor v(t) = v = const., azaz (27) egyenletből az integrálás elvégzése után a következő marad:

 
\[i_H \equiv \sqrt{I_1I_2}\cdot \cos \left [k_1\cdot 2v\cdot \left (t-\frac{x}{c}\right ) - \varphi \right ] = \sqrt{I_1I_2}\cdot \cos \left [(\omega_1 -\omega_2)\cdot t -(k_1 - k_2)\cdot x - \varphi\right ]\]
(28)

ahol felhasználtuk (24)-et. Egy lebegésszerű jelenséget tapasztalunk: a heterodin jel a körfek-venciák különbségének megfelelő frekvenciával harmonikusan változik. A másik jellemző sebességfüggést, a szinuszos rezgőmozgást végző tükröt, a következő alfejezetben tárgyaljuk.

Amplitúdó mérés heterodin méréstechnikával

Az előző fejezetben tárgyaltuk, hogy az interferométer egyik tükrének állandó, a tükörre merőleges sebességgel történő mozgatásának hatására milyen heterodin jel keletkezik és ez hogyan használható a sebesség nagyságának meghatározására. Ebben a fejezetben azt vizsgáljuk milyen a heterodin jel alakja, ha mozgás ugyan merőleges a tükörre, de a sebesség nagysága időben változó: a példa kedvéért harmonikus rezgőmozgás. A rezgés kitérése:

 
\[x_r = x_0\cos (\omega_rt + \varphi_r)\]
(29)

ahol \setbox0\hbox{$x_0$}% \message{//depth:\the\dp0//}% \box0% az amplitúdó \setbox0\hbox{$\omega_r$}% \message{//depth:\the\dp0//}% \box0% a rezgés körfrekvenciája \setbox0\hbox{$\varphi_r$}% \message{//depth:\the\dp0//}% \box0% pedig a kezdőfázis. Ez alapján a pillanatnyi sebesség:

 
\[v(t) = \dot{x} = -x_0\omega_r \sin (\omega_rt + \varphi_r)\]
(30)

A heterodin frekvencia pedig:

 
\[f_H = \frac{2v}{\lambda} = -\frac{2x_0\omega_r\sin(\omega_rt+\varphi_r)}{\lambda}\]
(31)

Itt „v” a tükör #2 sebessége az interferométerben, \setbox0\hbox{$\lambda$}% \message{//depth:\the\dp0//}% \box0% az alkalmazott fény hullámhossza. A heterodin jel alakja a harmonikusan rezgő tükör esetén (27) és (30) alapján:

 
\[i_H \equiv \sqrt{I_1I_2}\cos \left [\int\limits_0^{t-x/c}k_1\cdot 2v(\tau)d\tau - \varphi \right ] = \sqrt{I_1I_2}\cos \left [k_1\cdot 2x_0\cdot \cos \left (\omega_r \cdot (t-x/c)+ \varphi_r\right ) - \varphi \right ]\]
(32)

ahol \setbox0\hbox{$\varphi$}% \message{//depth:\the\dp0//}% \box0%-be a t = 0 miatt újonnan keletkezett konstans fázistolást is belevettük. Ha \setbox0\hbox{$\varphi_r$}% \message{//depth:\the\dp0//}% \box0%-be szintén beleértjük az x/c-ből eredő konstans fázistolást, akkor a heterodin jel alakja a következő:

 
\[i_H \equiv \sqrt{I_1I_2}\cos \left [k_1\cdot 2x_0\cdot \cos(\omega_rt + \varphi_r) -\varphi \right ]\]
(33)
3. ábra. A heterodin jel (vékony kék vonal) és a tükör sebessége (vastag fekete vonal) az idő függvényében. A heterodin jel egy frekvenciamodulált jel: amikor nagy a sebesség akkor sűrűbb, 0 körüli sebességnél a frekvencia is 0 körüli. \setbox0\hbox{$\phi_r$}% \message{//depth:\the\dp0//}% \box0% határozza meg a görbék együttes mozgását az időskálán, \setbox0\hbox{$\phi$}% \message{//depth:\the\dp0//}% \box0% pedig a heterodin jel (kék görbe) kezdőfázisát adja meg a tükör sebességét leíró (fekete) görbéhez képest.

A 3. ábrán jól láthatóak a heterodin jel nullhelyei. Célunk az, hogy összefüggést találjunk az adott idő alatt mérhető nullátmenetek és a rezgés amplitúdója között. Vizsgáljuk meg mi a feltétele annak, hogy a heterodin jel értéke 0 legyen. Ha bevezetjük a heterodin jel fázisára a:

 
\[\Phi \equiv k_1\cdot 2x_0\cdot \cos(\omega_rt + \varphi_r) - \varphi\]
(34)

jelölést, akkor a zérus helyek feltétele:

 
\[\cos(\Phi) = 0  \quad \to \quad \Phi = (2n+1)\frac{\pi}{2} \quad n \in Z\]
(35)

Ebből a következő adódik:

 
\[\Phi = \frac{4\pi x_0}{\lambda}\cos (\omega_rt + \varphi_r) - \varphi = (2n+1)\frac{\pi }{2}\]
(36)

Vegyük a \setbox0\hbox{$\varphi_r {{=}} 0$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\varphi {{=}} 0$}% \message{//depth:\the\dp0//}% \box0% esetet, és vizsgáljuk meg hány nullahelye van a heterodin jelnek a rezgés egy félperiódusa alatt, azaz \setbox0\hbox{$\omega_rt \in [0;\pi]$}% \message{//depth:\the\dp0//}% \box0% intervallumon? A 4. ábra mutatja a \setbox0\hbox{$\pi$}% \message{//depth:\the\dp0//}% \box0%-vel normált fázist az idő függvényében; azt keressük, ez a görbe hol veszi fel a (36)-ban meghatározott értékeket (ld. vízszintes rácsozat).

4. ábra. A fenti görbe a \setbox0\hbox{$\pi$}% \message{//depth:\the\dp0//}% \box0%-vel normált fázist mutatja az idő függvényében. A vízszintes rácsozat a 0,5 1,5; 2,5; 3,5 stb. értékeket mutatják, azt ahol a heterodin jel értéke zérus lesz.

Az 4. ábra vízszintes rácsozata és a görbe metszéspontjai határozzák meg a heterodin jel nullátmeneteinek időpontjait. Egy fél periódus alatt a (36) függvény \setbox0\hbox{$\pm 4\pi x_0/\lambda$}% \message{//depth:\the\dp0//}% \box0% közötti értékeket vehet föl, a nullahelyek száma tehát:

 
\[N = 2\cdot Round\left ( \frac{4x_0}{\lambda}\right )\]
(37)

ahol Round(E) az „E” értékének matematikai szabályok szerinti kerekítése. Hogyha a \setbox0\hbox{$\varphi_r \neq 0$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$\varphi \neq 0$}% \message{//depth:\the\dp0//}% \box0%, akkor ezek és x0 pontos értékétől függően a nullhelyek értéke eltérhet a képlettől ± 2-vel. Általános esetben tehát, ha a kezdőfázisok ismeretlenek:

 
\[N = 2\cdot Round\left ( \frac{4x_0}{\lambda}\right )\pm 2\]
(38)

A fázisok hatásának megértéséhez a nullhelyeket meghatározó (36) képletet átrendezzük:

 
\[\frac{4\pi x_0}{\lambda}\cos (\omega_rt + \varphi_r) = (2n+1)\frac{\pi}{2} - \varphi\]
(39)

Ez alapján úgy lehet képzelni, mintha \setbox0\hbox{$\varphi$}% \message{//depth:\the\dp0//}% \box0% a 4. ábrán szereplő rácsozatot függőlegesen, \setbox0\hbox{$\varphi_r$}% \message{//depth:\the\dp0//}% \box0% pedig az egész görbét vízszintesen tologatná. A kísérlet során a harmonikus rezgést egy hangfrekvenciás elektromos generátorral hozzuk létre és a nullahelyeket ezen gerjesztő jel félperiódusa alatt számoljuk meg, azonban a valódi rezgés ehhez képest \setbox0\hbox{$\varphi_r$}% \message{//depth:\the\dp0//}% \box0% fázissal el van tolódva, ami az elektromos (kábelhossz, eszközök frekvencia átvitele) és a mechanikai fáziseltolódás összege. A mechanikai fázistolás a teljes heterodin jel időfüggő eltolódását okozza, az elektronikai rendszer fázistolása pedig a gerjesztő feszültséghez képest tolja el a rezgő tükör sebesség-idő függvényét. A \setbox0\hbox{$\varphi$}% \message{//depth:\the\dp0//}% \box0% az optikai elemek fázistolásának, és mechanikai pozíciójának eredménye (hatására a heterodin jel kezdőfázisa változik meg a sebesség-időfüggvényhez képest), így az optikai elemek nagyon kicsi elmozdulásaira is igen nagyot változik: a rendszer a mechanikai rezgésekre igen érzékeny lesz.

A mérést az 1. ábra szerinti interferométerrel végezzük el, amelyben természetesen csak akkor kapunk eredményt, ha x0 elég nagy. Amennyiben \setbox0\hbox{$x_0 < \lambda/8$}% \message{//depth:\the\dp0//}% \box0%, akkor nullahelyek nem lépnek fel, így ez az eljárás nem alkalmazható. (Ekkor csak a heterodin jel spektrális vizsgálata adhat információt az amplitudóról.) Ezért a heterodin jel nullátmeneteinek számlálásával az alkalmazott lézerfény hullámhosszánál (\setbox0\hbox{$\lambda_{He-Ne} {{=}} 633 nm$}% \message{//depth:\the\dp0//}% \box0%) nagyobb amplitúdójú rezgéseket lehet csupán vizsgálni. Ha a nullátmenetek között eltelt idők reciprokát képezzük, akkor ezek úgy tekinthetők, mint a ti és ti+1 időpontok közötti pillanatnyi frekvencia, így ezen időközök \setbox0\hbox{$\Delta \tau_{i} {{=}} t_{i+1}-t_i$}% \message{//depth:\the\dp0//}% \box0% mérésével a pillanatnyi sebesség abszolút értéke is meghatározható az alábbi összefüggés alapján (de az előjele nem):

Mérési feladatok

PDF formátum