„Fotoeffektus vizsgálata” változatai közötti eltérés
(→Mérési feladatok) |
(→Elméleti összefoglaló) |
||
4. sor: | 4. sor: | ||
A külső fényelektromos hatás alapjelensége: ha egy fémlemezre fény esik, a lemezből elektronok lépnek ki. E jelenség vizsgálata néhány olyan eredményre vezetett, melyeket a fény folytonos hullámelméletével nem lehet megmagyarázni. Ezek a következők: | A külső fényelektromos hatás alapjelensége: ha egy fémlemezre fény esik, a lemezből elektronok lépnek ki. E jelenség vizsgálata néhány olyan eredményre vezetett, melyeket a fény folytonos hullámelméletével nem lehet megmagyarázni. Ezek a következők: | ||
− | * Az elektronok csak akkor lépnek ki, ha a fény frekvenciája nagyobb egy, az illető fémre jellemző határfrekvenciánál. A klasszikus szemlélet szerint azonban a W = konst | + | * Az elektronok csak akkor lépnek ki, ha a fény frekvenciája nagyobb egy, az illető fémre jellemző határfrekvenciánál. A klasszikus szemlélet szerint azonban a <math>W = konst*\Phi</math> feltételnek megfelelő sugárzási intenzitás minden frekvencián biztosítható. |
− | * Megfelelő fényfrekvencia esetén az elektronok kilépése akármilyen gyenge fény hatására azonnal (10-9 s-on belül) bekövetkezik. (A kísérletek során használt fémeknél a kilépési munka 10-19 J nagyságrendű, az elektron által „lefedett” terület, ahonnan energiát gyűjthet ~ 10- | + | * Megfelelő fényfrekvencia esetén az elektronok kilépése akármilyen gyenge fény hatására azonnal (10<sup>-9</sup> s-on belül) bekövetkezik. (A kísérletek során használt fémeknél a kilépési munka 10<sup>-19</sup> J nagyságrendű, az elektron által „lefedett” terület, ahonnan energiát gyűjthet ~ 10<sup>-19</sup>m<sup>2</sup> , egy átlagos megvilágítást feltételezve, ami <math> ~10^-5W/m^2</math>, a DE = FADt alapján 105 s , ~ 28 óra lenne a folyamathoz szükséges idő.) |
* A kilépő elektronok száma arányos a megvilágítás erősségével, de energia eloszlásuk független attól. A maximális mozgási energia a fény frekvenciájának lineáris függvénye, a klasszikus számítások szerint ez nem lineáris. | * A kilépő elektronok száma arányos a megvilágítás erősségével, de energia eloszlásuk független attól. A maximális mozgási energia a fény frekvenciájának lineáris függvénye, a klasszikus számítások szerint ez nem lineáris. | ||
A lap 2013. január 20., 12:51-kori változata
Szerkesztés alatt!
Elméleti összefoglaló
A külső fényelektromos hatás alapjelensége: ha egy fémlemezre fény esik, a lemezből elektronok lépnek ki. E jelenség vizsgálata néhány olyan eredményre vezetett, melyeket a fény folytonos hullámelméletével nem lehet megmagyarázni. Ezek a következők:
- Az elektronok csak akkor lépnek ki, ha a fény frekvenciája nagyobb egy, az illető fémre jellemző határfrekvenciánál. A klasszikus szemlélet szerint azonban a feltételnek megfelelő sugárzási intenzitás minden frekvencián biztosítható.
- Megfelelő fényfrekvencia esetén az elektronok kilépése akármilyen gyenge fény hatására azonnal (10-9 s-on belül) bekövetkezik. (A kísérletek során használt fémeknél a kilépési munka 10-19 J nagyságrendű, az elektron által „lefedett” terület, ahonnan energiát gyűjthet ~ 10-19m2 , egy átlagos megvilágítást feltételezve, ami , a DE = FADt alapján 105 s , ~ 28 óra lenne a folyamathoz szükséges idő.)
- A kilépő elektronok száma arányos a megvilágítás erősségével, de energia eloszlásuk független attól. A maximális mozgási energia a fény frekvenciájának lineáris függvénye, a klasszikus számítások szerint ez nem lineáris.
E kvalitatív tapasztalatok kvantitatív magyarázatát Albert Einstein adta meg azzal, hogy Planck kvantumhipotézisét a fényjelenségekre is kiterjesztette. Feltételezte, hogy a Planck-féle h f energiacsomag nem csak a sugárzó oszcillátor diszkrét energiaváltozásait adja meg, hanem a sugárzási térben is h f adagokban van jelen az energia. A fényenergia diszkrét energiaadagokban terjed. Ezek a fotonok. Tehát egy foton energiája:
ahol h a Planck-féle állandó, f pedig a sugárzás– esetünkben a fény – frekvenciája. Az elektronok kilépése csak akkor indulhat meg, ha a beeső fotonok energiája legalább az elektronok kötési energiájával egyenlő. A kilépés feltétele tehát:
ahol W az elektron kötési energiája, az úgynevezett kilépési munka, 0 f pedig a fémre jellemző küszöbfrekvencia.Általános esetben
vagyis a foton energiatöbblete a kilépő elektron kinetikus energiájaként jelenik meg. Nagyobb fényintenzitás több fotont, tehát több kilépő elektront jelent. Ilyen módon magyarázatot nyert a külső fényelektromos jelenség valamennyi felsorolt sajátsága. A fényelektromos jelenség legelterjedtebb gyakorlati alkalmazása a fotocella vagy fotodióda, amelyet mi is alkalmazunk mérésünkben.
A fotocella egy légritkított üvegcső, melynek egyik oldalán a belső felületére felvitt fémréteg képezi a katódot, a vele szemben elhelyezett dróthurok pedig az anód (1. ábra). Mint a (3) egyenletből látható, a határfrekvencia esetétől eltekintve a kilépő elektronok kinetikus energiával is rendelkeznek, ami feszültségmentes tér esetén elegendő ahhoz, hogy az anódig repüljenek, ezért 0 anódfeszültség esetén is mérhető bizonyos – igen kicsi – áram.
szín hullámhossz sárga 578 nm zöld 546 nm kék 436 nm ibolya/1 405 nm ibolya/2 365 nm
Ha a zöld vagy a sárga vonallal dolgozunk, használjuk a megfelelő színszűrőt, hogy a rácseltérítés folytán magasabb eltérítési rendekből átfedő ultraibolya fényt kiszűrjük!
Mérési feladatok
- Kapcsolja be a higanygőzlámpát. Hagyja legalább 10 percig bemelegedni. Ezalatt ellenőrizze, hogy a fényforrás, a rács-lencse és a dióda egy magasságban legyenek. Kapcsolja be a mérő egységet, és az erre szolgáló (kék) csatlakozókon feszültségmérővel ellerőrizze a tápfeszültséget adó telepek feszültségét. (Legalább 6 V szükséges a helyes működéshez. A készülék azért elemes (akkumulátoros) táplálású, mert ez biztosítja a leginkább zajmentes tápellátást.
- A bemelegedési idő után a lámpa egy kiválasztott vonalát a mérőegység forgatásával állítsa a fehér takaró lemezen lévő nyílásra. Forgassa el a mérőegységen lévő fényárnyékoló hengert, hogy láthatóvá váljék a doboz belsejében a fotodióda előtt lévő maszk és rajta az ablak. Erre az ablakra fókuszálja a spektrumvonalat a rács-lencse mozgatásával. Győződjön meg róla, hogy ugyanaz a spektrumvonal fókuszálódik a belső maszk nyílásán, mint amelyik a külső lemez nyílására esik! Ezt a mérőegység kis elforgatásával lehet szabályozni. Ezután fordítsa a helyére a fényárnyékoló hengert.
- Minden mérés előtt nyomja be a mérőegységen levő piros nullázó gombot! Ezzel kisüti az elektronikai rendszerben keletkezett feltöltődést; így biztosíthatjuk azt, hogy csak a kiválasztott spektrumvonal által keltett fotóáram következtében létrejött potenciált mérjük.
PDF formátum
- Fotoeffektus vizsgálata (pdf)