Mechanikai alapmérések
Készül!
A mérés célja:
- megismerkedni mechanikai jellemzők mérésének néhány egyszerű módszerével.
Ennek érdekében:
- áttekintjük a rugalmas alakváltozással kapcsolatos összefüggéseket,
- megmérjük néhány mintadarab rugalmas alakváltozását,
- méréseket végzünk fonálingával.
Tartalomjegyzék |
Elméleti összefoglaló
Külső erő hatására a testekben alakváltozás lép fel. Ha az erő megszűnte után a test teljesen visszanyeri eredeti alakját, akkor az alakváltozást rugalmasnak nevezzük. (A gyakorlatban rugalmas alakváltozásról beszélünk, ha a maradandó alakváltozás kisebb, mint 2 ‰.) A külső erő által létrehozott rugalmas alakváltozás függ az erő nagyságától, az igénybevétel fajtájától (pl. húzás, hajlítás), az alakváltozásnak kitett test geometriai adataitól, anyagi összetételétől, illetve minőségétől. Az igénybevételek bizonyos fajtáinál, valamint meghatározott geometriájú testek esetében az alakváltozást létrehozó erő és a deformáció közötti összefüggés ismert. Ezek az ismert összefüggések tartalmazzák az anyagi összetételt, illetve minőséget figyelembevevő tényezőt, amelyet így meghatározott fajtájú igénybevétel esetén az erőnek, az erő által létrehozott deformációnak valamint a geometriai adatoknak az ismeretében az összefüggésből meg tudunk határozni. Nagyobb erő hatására a testben maradandó alakváltozás keletkezhet (képlékeny alakváltozás), illetve a test eltörhet, elszakadhat.
Testek húzás és nyomás hatására történő alakváltozása
Húzás hatására történő rugalmas alakváltozás
Egy hosszúságú és mindenütt keresztmetszetű egyenes rúd egyik végét rögzítjük. Másik végét a rúd tengelyének irányába eső erővel meghúzzuk. Az ilyen körülmények közötti terhelést nyújtásnak vagy húzásnak nevezzük. Különböző húzóerőkhöz tartozó megnyúlásokat azonos anyagból készült különböző hosszúságú és keresztmetszetű próbatesteken megmérve azt tapasztaljuk, hogy a rugalmassági határon belüli megnyúlás egyenesen arányos a húzóerővel, a próbatest hosszával és fordítottan arányos a keresztmetszettel,
A kísérleteket különböző anyagból készült mintadarabok sorozatán megismételve azt találjuk, hogy az arányossági tényező az anyagra jellemző állandó. Az arányossági tényező helyett rendszerint annak reciprokát, az ún. rugalmassági- , nyújtási-, vagy Young-moduluszt () használják. A megnyúlás ezzel kifejezve
Ha megmérjük az erőt, az általa létrehozott megnyúlást, valamint a geometriai adatokat (-t és -et) akkor az utóbbi kifejezés segítségével a próbatestek anyagára jellemző rugalmassági együttható meghatározható.
A fenti kifejezések nyomás esetében is érvényesek, ami azt jelenti, hogy a testek húzási illetve nyomási rugalmassági állandója (Young-modulusza) egyforma.
Húzás hatására történő képlékeny alakváltozás
Ha az egyik végén rögzített hosszúságú és mindenütt keresztmetszetű egyenes rúd (vagy huzal) másik végét fokozatosan egyre nagyobb erővel húzzuk, akkor kezdetben a test rugalmas alakváltozást szenved. Ebben a tartományban a megnyúlás () közelítőleg egyenesen arányos az alkalmazott erővel. A rugalmassági határ elérése után a test képlékeny alakváltozást szenved. Legtöbb fémnél a rugalmas tartományt a képlékeny folyás követi. Ekkor a test kis erőnövekedés hatására is jelentősen (és maradandóan) megnyúlik. A (jó közelítéssel) állandó térfogat miatt a test (huzal) jól megfigyelhetően elvékonyodik. Néhány fémnél (például az acélnál) megfigyelhető, hogy a test elszakadása előtt "felkeményedik", azaz jelentősen növekvő erő hatására is csak csekély mértékben nyúlik tovább. Végül az erő további növelésekor a test elszakad. Az ehhez szükséges húzófeszültség (egységnyi felületre eső húzóerő) az anyagra jellemző szakítószilárdság.
Alakváltozás hajlítás esetén
Egyik végén befogott, másik végén terhelt rúd lehajlása
Az egyik végén befogott és a szabad végén a rúdra merőlegesen erővel terhelt, tetszőleges alakú állandó keresztmetszetű rúd végének lehajlása:
Itt az egyenes rúd hossza, a keresztmetszetnek a lehajlás síkjára merőleges tengelyre vonatkozó másodrendű nyomatéka. Például az tengelyre vonatkozó másodrendű nyomatékot az alábbi, a rúd teljes keresztmetszetére elvégzett integrál definiálja (1. ábra):
a keresztmetszet felületelemének a keresztmetszet súlypontján átmenő irányú tengelytől mért távolsága. A különböző alakú keresztmetszetekhez tartozó másodrendű nyomaték a fenti integrál segítségével kiszámítható. (A gyakran elforduló keresztmetszet típusok másodrendű nyomatékait a keresztmetszet alakjának paramétereivel kifejező formulákat a rugalmassági adatokat közlő táblázatok általában tartalmazzák.)
Az alábbiakban két esetben (2. ábra) megadjuk az tengelyre vonatkozó másodrendű nyomatékot szolgáltató formulákat. szélességű és magasságú téglalap keresztmetszet (2/a ábra) esetén
sugarú kör keresztmetszet esetén (2/b ábra) pedig
Ez alapján a téglalap keresztmetszetű, egyik végén befogott és a másikon F erővel terhelt rúd lehajlása (3. ábra.):
Két ponton alátámasztott, középen terhelt rúd lehajlása
A két ponton alátámasztott, az alátámasztási pontok között középen erővel terhelt rúd lehajlását az alábbi összefüggés adja:
Állandó nyomatékkal terhelt rúd lehajlása
Az állandó nyomatékkal terhelt rúd esetét az 5/a ábra szemlélteti. Az ábrán a vizsgált, deformációt szenvedő rúd az alsó. A felső az ún. négypontos hajlítás (két alátámasztási + két támadási pont) megvalósításához használt segédeszköz. A vizsgált tartót terhelő erőket az 5/b ábrán tüntettük fel. Ha a tartó bal oldalától elindulva jobb felé felrajzoljuk a keresztmetszeteket terhelő nyomatékokat, az 5/c ábrát kapjuk. A tartó középső részét állandó nyomaték terheli.
Elméletileg levezethető, hogy az állandó nyomatékkal terhelt tartó kör alakban deformálódik és deformációja (5/d ábra):
ahol . Téglalap keresztmetszetű rúdra behelyettesítve a téglalap másodrendű nyomatékát:
Összefoglalva, valamely anyag rugalmassági állandója a megfelelően kialakított próbatestre ható erő által létrehozott deformáció (), továbbá a geometriai jellemzők mérése alapján meghatározható.
Mérési feladatok
A méréshez rendelkezésre álló eszközök
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
1. Négypontosan terhelt rúd lehajlásának vizsgálata
a) Négypontosan terhelt rúd lehajlásának mérésével ellenőrizze az állandó nyomatékkal terhelt, téglalap keresztmetszetű rúd lehajlására levezetett kifejezést! Határozza meg a , és összefüggéseket!
- Az egyik paramétert változtatva megmérjük a deformációt, miközben a többi paramétert rögzítjük.
A kapcsolat meghatározásánál egyetlen mintadarabot alkalmazunk, azaz rögzített geometria mellett változtatjuk a terhelő nyomtatékot, és mérjük a hozzá tartozó értékét.
A összefüggés ellenőrzésénél állandó értéke mellett különböző vastagságú, de azonos szélességű mintadarabok deformációját mérjük állandó terhelő nyomatékkal. Ekkor a – függvény ábrázolva egyenest kell kapnunk, melynek meredeksége kitevője.
Hasonló módon vizsgálható a összefüggés is.
- A méréseket alumínium mintákkal kell elvégezni. Jegyezze fel a vizsgált rudak méreteit!
b) Határozza meg az a) feladatban használt minták rugalmassági együtthatóját!
- A mérések alapján végezzen elsődleges becslést az alumínium Young-moduluszára vonatkozóan, majd hasonlítsa össze azt az elérhető irodalmi adatokkal!
2. Inga lengésidejének mérése