Termoelektromos jelenségek
A Landauer-formula tárgyalásakor láttuk, hogy egy elektródából egy egycsatornás nanovezetékbe folyó áram az elektróda Fermi-függvényének energia szerinti integrálja szerint származtatható:
Ha egy transzmissziós valószínűségű szórócentrumot tartalmazó egycsatornás nanovezeték elektródái közé feszültséget kapcsolunk, a nanovezetékben
áram folyik, mely alapján vezetőképességet kapunk. A következőkben azt vizsgáljuk meg, hogy mi történik, ha elektródáknak nem csak a kémiai potenciálja tér el, hanem a hőmérsékletük is különböző lehet (1. ábra).1. ábra. Különböző kémiai potenciálú és hőmérsékletű elektródák közötti átmeneti valószínűségű szórócentrummal rendelkező egycsatornás nanovezeték elektromos és hőtranszport tulajdonságaira vagyunk kíváncsiak |
Az elektromos áramot hasonlóan számíthatjuk az elektródák kémiai potenciál és hőmérsékletfüggő Fermi-függvényei segítségével:
A termodinamikából ismert összefüggés alapján hasonlóan származtatható az elektródából a nanovezetékbe folyó hőáram is:
illetve ennek megfelelően a két elektróda között folyó hőáram transzmissziós valószínűség esetén:
Itt fontos megjegyezni, hogy ha az első elektródából/elektródába folyó hőáramot számítjuk, akkor a fenti integrálban . Ugyanígy számíthatnánk a 2. elektródából/elektródába folyó hőáramot, ekkor a fenti integrálban szerepelne. Mivel ez a két számolás ugyan akkora hőáramot kell, hogy adjon, így a kétféle számolás szükségszerűen ugyan arra az eredményre vezet.
Termofeszültség számolása (Seebeck-effektus)