Termoelektromos jelenségek
A Landauer-formula tárgyalásakor láttuk, hogy egy elektródából egy egycsatornás nanovezetékbe folyó áram az elektróda Fermi-függvényének energia szerinti integrálja szerint származtatható:
Ha egy transzmissziós valószínűségű szórócentrumot tartalmazó egycsatornás nanovezeték elektródái közé feszültséget kapcsolunk, a nanovezetékben
áram folyik, mely alapján vezetőképességet kapunk. A következőkben azt vizsgáljuk meg, hogy mi történik, ha elektródáknak nem csak a kémiai potenciálja tér el, hanem a hőmérsékletük is különböző lehet (1. ábra).1. ábra. Különböző kémiai potenciálú és hőmérsékletű elektródák közötti átmeneti valószínűségű szórócentrummal rendelkező egycsatornás nanovezeték elektromos és hőtranszport tulajdonságaira vagyunk kíváncsiak |
Az elektromos áramot hasonlóan számíthatjuk az elektródák kémiai potenciál és hőmérsékletfüggő Fermi-függvényei segítségével:
A termodinamikából ismert összefüggés alapján hasonlóan származtatható az elektródából a nanovezetékbe folyó hőáram is:
illetve ennek megfelelően a két elektróda között folyó hőáram transzmissziós valószínűség esetén:
Itt fontos megjegyezni, hogy ha az első elektródából/elektródába folyó hőáramot számítjuk, akkor a fenti képletben szerepel. Ugyanígy számíthatnánk a 2. elektródából/elektródába folyó hőáramot, ekkor az energia szerinti integrálban szorzófaktor szerepelne. Mivel ez a két számolás ugyanakkora hőáramot kell hogy adjon, így a kétféle számolás szükségszerűen ugyanarra az eredményre vezet.
A fentiek alapján az elektromos vezetőképesség számolását (Landauer-formula) kiegészítve kiszámolhatjuk az 1. ábrán látható rendszer hővezetőképsségét, illettve Seebeck- és Peltier-együtthatóját is.
Termofeszültség számolása (Seebeck-effektus)
Számoljuk ki az 1. ábrán szereplő rendszerre az elektromos áramot a két elektróda eltérő hőmérséklete esetén! Az
integrál kiszámításához segítségül hívhatjuk a szilárdtestfizika alapjai tárgyban már megismert Sommerfeld-sorfejtést, melynek segítségével egy tetszőleges energiafüggő mennyiség Fermi-fügvénnyel vett szorzatának integrálja közelíthető:
Ezen Sommerfeld-sorfejtés alapját az képezi, hogy az függvényt alakban közelítjük, ahol a függvényt a 2. ábra szemlélteti. A Sommerfeld-sorfejtés első tagja a zérus hőmérsékletű Fermi-függvénnyel, azaz -nél zérussá váló lépcsőfügvénnyel vett integrál. A második tag, azaz energiafüggetlen esetén értelemszerűen zérust ad (lásd 2. ábra), így ezen integrál első rendben -vel arányos.