Elektromos egyenáramú alapmérések

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Vanko (vitalap | szerkesztései) 2012. február 2., 20:40-kor történt szerkesztése után volt.


Tartalomjegyzék


A mérés célja:

- megismerkedni a legfontosabb elektromos jellemzők (az áram, a feszültség és az ellenállás) mérésének néhány egyszerű módszerével.

Ennek érdekében:

- áttekintjük az egyenáramú áramkörök törvényszerűségeit,

- ismertetjük a gyakorlat során alkalmazott mérési módszereket,

- egyszerű felépítésű áramkörök jellemzőit vizsgáljuk.

Elméleti összefoglaló

Az egyenáramú körökkel kapcsolatos alapfogalmak és törvények rövid összefoglalása

A töltéshordozók áramlásának intenzitását jellemző mennyiség az áramerősség

\[I=\frac{{\rm d}Q}{{\rm d}t}\]

ahol \setbox0\hbox{$Q$}% \message{//depth:\the\dp0//}% \box0% egy adott felületen átáramló töltést és \setbox0\hbox{$t$}% \message{//depth:\the\dp0//}% \box0% az időt jelenti. Az áramerősség egysége az amper (A). Az egyenáram irányát – megállapodás alapján – a pozitív töltéshordozók mozgásának iránya adja meg. Egyenáramról beszélünk, ha az áram erőssége időben állandó. Egy vezető két pontja között levő \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% potenciálkülönbség (feszültség) áram kialakulásához vezet. A vezetőre kapcsolt feszültség és a benne folyó áram között sok esteben (pl. fémes vezetőkben) az

\[U=RI\]

összefüggés – az Ohm törvény – áll fenn. Itt \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% a vezető ellenállása, amely a geometriai adatoktól (\setbox0\hbox{$l$}% \message{//depth:\the\dp0//}% \box0% hosszúság és \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% keresztmetszet) valamint a vezető anyagától (\setbox0\hbox{$\rho$}% \message{//depth:\the\dp0//}% \box0% fajlagos ellenállás ) az alábbi módon függ:

\[R=\rho\frac{l}{A}\]

A fajlagos ellenállás – sok más anyagi jellemzőhöz hasonlóan – hőmérsékletfüggő:

\[\rho=\rho_0\left[1+\alpha(t-t_0)+\beta(t-t_0)^2+...\right]\]

ahol \setbox0\hbox{$\rho_0$}% \message{//depth:\the\dp0//}% \box0% a fajlagos ellenállás \setbox0\hbox{$t_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékleten, \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$\beta$}% \message{//depth:\the\dp0//}% \box0%, ... stb. anyagi állandók és \setbox0\hbox{$\rho$}% \message{//depth:\the\dp0//}% \box0% a fajlagos ellenállás \setbox0\hbox{$t$}% \message{//depth:\the\dp0//}% \box0% hőmérsékleten felvett értéke. A vizsgált hőmérsékleti tartomány nagysága és a kívánt pontosság meghatározza, hogy konkrét esetben a fajlagos ellenállás hőmérsékletfüggésének leírásánál milyen közelítést alkalmazunk, azaz a kifejezésben hányadrendű tagig megyünk el.

Egyenáramú áramkörökkel kapcsolatos számításokat a Kirchhoff-törvények segítségével végezhetünk. A töltésmegmaradás törvényének kifejezése az úgynevezett csomóponti törvény: egy csomópontba összefutó áramok előjeles összege nulla. Ha a ki- és befolyó áramokat ellentétes előjelűnek tekintjük:

\[\sum_{i=1}^n I_i=0\]

Az energiamegmaradás törvényének következménye a huroktörvény, mely szerint egy zárt vezetőhurok feszültségeinek előjeles összege zérus:

\[\sum_{i=1}^n U_i=0\]

A Kirchhoff-törvények alkalmazásának egy lehetséges módja az alábbi:

  • Felrajzoljuk az áramkört és bejelöljük a telepek polaritását.
  • Tetszőlegesen felvesszük az ág áramokat és bejelöljük az irányukat.
  • Bejelöljük a hurkokban tetszőleges körüljárási irányokat.
  • Felírjuk a csomóponti egyenleteket. (Például a csomópontba befolyó áramokat tekintjük pozitívnak, a kifolyókat pedig negatívnak.)
  • Felírjuk a hurokegyenleteket. Ilyenkor pl. úgy járhatunk el, hogy a telepeken a pozitív pólustól a negatív pólus felé haladva a telep \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% üresjárati feszültségét pozitív előjellel vesszük figyelembe (fordított esetben pedig negatívval), az ellenállásokon eső \setbox0\hbox{$U=RI$}% \message{//depth:\the\dp0//}% \box0% feszültséget pedig akkor vesszük pozitív előjellel számításba, ha a körüljárási irány és a bejelölt ág áram iránya megegyezik (ellenkező esetben pedig negatívval).
  • Megoldjuk az egyenletrendszert. Azok az áramok, amelyek pozitívnak adódnak ténylegesen az előzete-sen felvett irányban folynak. Ha a számítások alapján az áramra negatív érték jön ki, a tényleges áramirány a felvettel éppen ellenkező.

Megmutatható, hogy egy áramkör esetében annyi egymástól független egyenlet írható fel, amennyi az ágak – vagyis az áramok – száma. A Kirchhoff-törvények alkalmazásával könnyen megkapható, hogy \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% darab sorba kapcsolt ellenállás eredője

\[R_s=\sum_{k=i}^n R_i\]

illetve a párhuzamosan kapcsolt ellenállások esetében az eredő reciproka:

\[\frac{1}{R_p}=\sum_{i=1}^n \frac{1}{R_i}\]

Az áramkörbe be nem kötött, ún. nyitott telep sarkai között fellépő feszültség az \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% üresjárati feszültség, melynek nagysága megegyezik a telep elektromotoros erejével. Az áramkörbe bekötött (árammal átjárt) telep sarkai között fennálló feszültség az \setbox0\hbox{$U_k$}% \message{//depth:\the\dp0//}% \box0% kapocsfeszültség. Ennek értéke és előjele a telepen átfolyó áram irányától és nagyságától függően az üresjárási feszültségétől jelentősen eltérő lehet. Az eltérés az \setbox0\hbox{$R_b$}% \message{//depth:\the\dp0//}% \box0% belső ellenálláson eső feszültségből adódik:

\[U_k=U_0-R_bI\]

Áram és feszültség mérése

Egyenáram és egyenfeszültség mérése a kérdéses mennyiség nagyságának és irányának (polaritásának) meghatározását jelenti.

Az árammérőt mindig sorosan kell bekötni az áramkörbe, azaz úgy, hogy a mérni kívánt áram átmenjen a műszeren. Ebből következik, hogy ideális esetben az árammérő ellenállásának zérusnak kellene lennie. Ha a műszer ellenállása nem nulla, akkor az áramkör ellenállását és ezen keresztül az áram értékét is megváltoztatja, és így mérési hibát okoz.

A feszültségmérő műszer (voltmérő) két bemeneti pontját mindig ahhoz a két ponthoz kell kötnünk, amelyek közötti feszültséget akarjuk megmérni. (Ha ez egy áramköri elem két végpontja, akkor ez azt jelenti, hogy a feszültségmérőt az áramköri elemmel párhuzamosan kell kapcsolni.) Ideális esetben a voltmérő belső ellenállásának végtelennek kellene lennie. Ellenkező esetben a műszer bekötése megváltoztatja a vizsgált két pont közötti ellenállást, és így egyúttal a mérni kívánt feszültséget is, vagyis mérési hibát okoz. Az elkövetett hiba a vizsgált áramkör elemeinek és az alkalmazott műszer belső ellenállásának ismeretében meghatározható.

A digitális voltmérők ellenállása legalább 1 MLaTex syntax error
\setbox0\hbox{$\Szigma$}%
\message{//depth:\the\dp0//}%
\box0%


Ellenállásmérés Ohm-törvénye alapján

Ellenállásmérés Wheatstone-híddal

Mérési feladatok