Hőmérsékletérzékelők hitelesítése
A mérés célja:
- három elterjedten alkalmazott hőmérsékletérzékelő: az ellenállás-hőmérő, a termisztor és a termoelem bemutatása.
Ennek érdekében:
- ismertetjük az ellenállás-hőmérő, a termisztor és a termoelem működésének alapelvét, valamint az alkalmazásukkal kapcsolatos fontosabb tudnivalókat,
- kimérjük az érzékelőket jellemző ellenállás–hőmérséklet, ill. feszültség–hőmérséklet kapcsolatokat,
- meghatározzuk az érzékelők viselkedését leíró függvények paramétereit.
Tartalomjegyzék |
Elméleti összefoglaló
Az anyagok jellemzői általában függenek a hőmérséklettől. Elvben bármely hőmérsékletfüggő tulajdonság felhasználható hőmérő készítésére. Ennek megfelelően a hőmérsékletmérő eszközök széles skáláját fejlesztették ki. A gyakorlat során a laboratóriumokban leggyakrabban használt hőmérők kerülnek bemutatásra: az ellenállás-hőmérő, a termisztor és a termoelem. Az előbbi kettőnél az elektromos ellenállás hőmérsékletfüggését használjuk ki, míg az utóbbinál termofeszültségét.
Ellenállás-hőmérő ellenállásának hőmérsékletfüggése
A fémes anyagok ellenállása az
kifejezéssel közelíthető, ahol és a ill. hőmérsékletekhez tartozó ellenállás értékek, pedig az anyagtól függő hőmérsékleti tényező (1. ábra). , , és ismeretében a hőmérséklet közvetlenül számítható.
Termisztor ellenállásának hőmérsékletfüggése
A félvezető anyagok ellenállása jól közelíthető az
kifejezéssel (2/a ábra), ahol a értékhez tartozó ún. maradékellenállás, és a félvezető anyagára jellemző állandó (, ahol a félvezető tiltott sáv szélessége, pedig a Boltzmann-állandó).
A kifejezés természetes alapú logaritmusát véve
Ha tehát a mért ellenállás értékek logaritmusát függvényében ábrázoljuk egyenest kapunk (2/b ábra), melynek tengelymetszetéből ill. meredekségéből és meghatározható.
Ellenállás-hőmérők és termisztorok összehasonlítása
Az ellenállás-hőmérő és a termisztor ellenállása függ a hőmérséklettől. Az előbbi esetben az elektronok mozgékonyságának csökkenése miatt az ellenállás növekszik a hőmérséklettel. Ezzel szemben a termisztor ellenállása csökken, mivel a hőmérséklet emelkedésével nő a töltéshordozók koncentrációja. A két érzékelő jellemzőit a következő táblázatban hasonlítjuk össze:
Tulajdonság | Ellenállás-hőmérő | Termisztor |
---|---|---|
Hőfoktényező | kicsi, | nagy, -függő |
(20 °C) | ~ 100 | k nagyságrendű |
Stabilitás | jó | gyengébb |
Reprodukálhatóság | jó | gyengébb |
Karakterisztika | lineáris | exponenciális |
Tömeg | > termisztor | < ellenállás-hőmérő |
Hőtehetetlenség | > termisztor | < ellenállás-hőmérő |
Ár | > termisztor | < ellenállás-hőmérő |
Hőmérséklet tartomány | -183-tól 630 °C-ig | -60-tól 150 °C-ig |
Anyaga | Pt, Cu, Ni, ötvözetek | különféle félvezetők |
A termoelem
Két különböző fém érintkezésekor a két fém között elektromos feszültség mérhető. Ez a feszültség az ún. kontaktpotenciál, melynek nagysága az érintkező fémek anyagi minőségétől és az érintkezési pont hőmérsékletétől függ.
Ha a 3. ábrán látható kapcsolást három különböző [(1), (2), és (3) jelzésű] fémből alakítjuk ki, de minden pont azonos hőmérsékleten van, akkor a voltmérőn nem jelentkezik feszültség. Amennyiben valamelyik fém-fém átmenet (A, B vagy C pontok) hőmérséklete megváltozik, akkor viszont feszültség mérhető, melynek értéke arányos a hőmérséklet-változással. Tehát, ha az A átmenet hőmérsékletét kívánjuk mérni, akkor a másik két átmenet (B és C pont) hőmérsékletét állandó értéken – a hitelesítés hőmérsékletén – kell tartani, ekkor a voltmérővel az A pont hőmérsékletének megváltozásával arányos feszültség mérhető. A többi pont hőmérsékletének állandó értéken tartása azért fontos, mert ellenkező esetben a fellépő kontaktpotenciál változások meghamisíthatják a mérést.
Ezen nehézségeket a két összekapcsolt termoelemből álló ún. termopár (4. ábra) segítségével küszöbölhetjük ki. A termopárt alkotó kontaktusok (B és C) az (1) és (2) anyagokat kötik össze, míg a (3) anyagból készült elvezető huzalok az A és a D pontokon kapcsolódnak a termopárhoz. Először a termopáron kialakuló feszültséggel – vagyis az A’ és D’ pontok között fellépő feszültséggel foglalkozunk [A’ és D’ az (1) anyagban, az A és D pontok közelében levő két pont]. Ha B és C hőmérséklete különböző, vagyis , akkor az A’ és D’ pontok között megjelenő feszültség arányos hőmérséklet-különbséggel.
ahol az indexben levő számok a termoelemet alkotó anyagokra utalnak, és kihasználtuk, hogy a szembe kapcsolt termoelemekre . (Megjegyezzük, hogy a lineáris közelítés szűk hőmérséklet-tartományban illetve kisebb pontossági igények esetén alkalmazható. Szélesebb hőmérsékleti intervallumban magasabb hatványkitevők és további állandók bevezetése szükséges.) Az összefüggés szerint a termopár kimenetén a B és C pontok közti hőmérsékletkülönbséggel arányos feszültség jelenik meg. Ha tehát hőmérőként kívánjuk használni, akkor az egyik átmenetet ismert hőmérsékleten kell tartani. A vonatkoztatási hőmérséklet általában 0 °C, ami olvadó jég segítségével könnyen előállítható és tartható. (A pontosság növelése érdekében célszerű desztillált vízből készíteni a jeget.)
Ennél a kapcsolásnál tehát a hőmérsékletmérés a B és a C pontoknál levő átmenetek segítségével történik. A mérőműszerhez vezető huzalok csatlakozási pontjainál (A és D) azonban elkerülhetetlenül további "járulékos" termoelemek alakulnak ki. Ezek a "járulékos" termoelemek azonos anyagból állnak [az (1) és a (3) jelű anyagból], így a keletkezett termofeszültségek szembekapcsolódnak. Mérés közben tehát csak arra kell ügyelni, hogy ezen átmeneteknek azonos legyen a hőmérséklete. Ez a feltétel aránylag könnyen teljesíthető az átmenetek közötti jó termikus kapcsolattal.
Hitelesítés
A hitelesítés jelen esetben az érzékelők hőmérséklet–ellenállás ill. hőmérséklet–termofeszültség függvényeinek meghatározását jelenti. A mérésnél a hőmérséklet-érzékelőket olajjal töltött dupla falú üvegedénybe (hőcserélőbe) helyezzük egy-egy "hiteles" higanyos hőmérővel együtt (termopár esetében csak az egyik termoelem kerül olajfürdőbe, a másik víz-jég keverékbe merül). Az olajfürdő hőmérsékletét az üvegedény falában áramoltatott, termosztáttal szabályozott hőmérsékletű víz segítségével állítjuk be.
A hőmérséklet változása közben néhány fokonként egyszerre kell leolvasni a higanyos hőmérő által mutatott hőmérsékletet és az ellenállás- ill. feszültségértékeket. A különböző eszközök hőtehetetlensége miatt fellépő hiba kiküszöbölése érdekében a mérést növekvő és csökkenő hőmérséklet mellett is el kell végezni. (Pontosabb méréseket lehetne végezni állandósult hőmérsékleten – stacioner állapotban –, de a mérési gyakorlaton nincs idő a hőmérsékleti egyensúly beálltát minden hőmérsékleten megvárni.)
Az ellenállásokat a nagyobb pontosság érdekében lehetne Wheatstone-híddal, a feszültségeket pedig kompenzációs módszerrel is mérni. A mérési gyakorlaton azonban a méréseket digitális multiméterrel fogja végezni.
Mérési feladatok
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
1. Hitelesítse a higanyos hőmérőt!
a) Higanyos hőmérő (0-100 ºC, 0,1 ºC osztás) nullpontjának ellenőrzése olvadó jégben. Helyezze a hőmérő gömbjét az olvadó jéggel töltött termoszba, és várjon kb. 5 percet, majd olvassa le a hőmérsékletet! Adja meg a hőmérő nullpontértékének korrekcióját!
b) Higanyos hőmérő hőmérsékleti skálájának ellenőrzése NaSO.10HO bomlási hőmérséklete (32,38 ºC) alapján. A hőcserélőben elhelyezett frissen porított sót áramoltatott, fűtött termosztát folyadékkal melegítse kb. 40 ºC-ig! Ehhez a termosztát előlapján a jobboldali kapcsolóval (motor) a folyadék keringtetését, az 500 W fűtéskapcsolóval a folyadék melegítését kell bekapcsolni. A vizsgálatnál meghatározott időközökben (pl. percenként) mérje a só hőmérsékletét, és a felvett hőmérséklet–idő grafikon elemzésével állapítsa meg az erre a hőmérsékletre jellemző korrekciót! Mérés közben folyamatosan ügyeljen arra, hogy a hőmérő higanygömbje mindig a sóban legyen!
- Mit vár? Hogyan fog változni a só hőmérséklete az idő függvényében? Hogyan állapíthatja meg az átalakulási hőmérséklet mért értékét?
2. Állapítsa meg az ellenállás-hőmérő és a termisztor ellenállásának, valamint a termoelem termofeszültségének hőmérsékletfüggését a hőmérséklet növekedése közben! A méréseket három multiméterrel végezze! A hőmérsékletet a szobahőmérséklettől kb. 60 °C-ig változtassa!
- Jegyezze fel, milyen méréshatáron méri az egyes mennyiségeket!
3. A maximális hőmérséklet elérésekor mérje meg a termoelem belső ellenállását! A termoelem és a félvezető termoelem belső ellenállásához mérni kell
a) a termoelem üresjárati feszültségét ()
b) a termoelem áramát egy ismert ellenálláson keresztül ().
Ez az ismert ellenállás maga az árammérő is lehet, pl. 20 mA vagy 200 mA méréshatáron. Az árammérő ellenállását (, ami természetesen függ a méréshatártól) egy ellenállásmérő segítségével lehet megmérni. (Az ellenállásmérőt egyszerűen rákötjük a – természetesen más áramkörbe ezalatt be nem kötött –, megfelelő méréshatárra beállított árammérőre.) Ezután a termoelem belső ellenállása a Kirchhoff-törvények alapján számolható.
- Milyen méréshatárra állított árammérővel terheli a termoelemet? Miért?
- Mekkora az árammérő belső ellenállása ezen a méréshatáron?
4. Végezze el a feladatot csökkenő hőmérséklet mellett is!
Ehhez először 25 ºC-ra kell állítani a kontakthőmérőt, és ki kell nyitni a hűtőkör vízcsapját.
- Tapasztal-e különbséget a növekvő és csökkenő hőmérséklet mellett mért adatok között?
5. Mérési eredményeit ábrázolja diagramon!
6. Az ellenállás-hőmérő és a termoelem vizsgálata során kapott mérési pontokra illesszen egyenest! Határozza meg az érzékelők paramétereit és adja meg hibájukat!
7. A termisztoron végzett mérés eredményeit ábrázolja grafikonon! A kapott pontokra illesszen egyenest, határozza meg a termisztor és paramétereit és adja meg a hibájukat!