Optikai heterodin detektálás
Tartalomjegyzék |
Szerkesztés alatt!
Elméleti összefoglaló
A hullám fogalma – a fény mint hullám
A fény, mint ismeretes, az elektromágneses tér hullámjelensége. Jellemző rezgési frekvenciája a 1014 Hz körüli tartományba esik. Az a fizikai mennyiség, amelynek terjedését egyszerűen fénynek nevezzük, az elektromos és mágneses térerősség. Tehát a fényben az elektromos és a mágneses tér változásai terjednek. Tekintsünk egy, a tárgyalás szempontjából egyszerű, lineárisan polarizált harmonikus síkhullámot. A síkhullám elnevezés onnan ered, hogy az azonos térerősségű pontok egy adott pillanatban egy síkon helyezkednek el. A síkhullám kifejezése:
ahol E0 az elektromos hullám amplitúdója, k a hullámszám vektor, az elektro-mágneses hullám körfrekvenciája, „f” pedig a frekvenciája. Egyszerű megfontolásokból a hullám terjedési sebessége k-val és -val kifejezhető:
A „k” helyett a gyakorlatban -t szokás használni, amelyet hullámhossznak nevezünk. Így az egyenlet ismertebb alakjában . Az (1) egyenletből látszik szemléletes jelentése is: azt a k vektor irányában mért legkisebb távolságot jelenti, amely szerint a térerősség periodikusan változik.
Doppler-effektus
Tegyük fel, hogy az (1) szerinti monokromatikus síkhullámot egy „K” koordináta-rendszerben írtuk fel. Ha ezt a síkhullámot a K-hoz képest v(t) pillanatnyi sebességgel mozgó K' rendszerből figyeljük, akkor a hullám K-beli frekvenciájától különböző frekvenciájú hullámot fogunk észlelni. Válasszuk úgy a K és K' rendszert, hogy -ban az origók egybe essenek. Ekkor a K-beli koordinátát K'-beli koordinátákkal kifejezhetjük:
Ezt beírva az (1) egyenletbe, a hullám K'-beli alakját nyerjük:
Definíció szerint a körfrekvencia a fázis () idő szerinti parciális deriváltja:
tehát a két rendszer relatív sebességétől függően a körfrekvencia megváltozik, mégpedig a két vonatkoztatási rendszer relatív sebességének pillanatnyi értéke szerint. (Az egyszerűség kedvéért v és ω időfüggését a továbbiakban nem jelöljük.) Ezt a jelenséget felfedezőjéről Doppler-effektusnak nevezik. A jelenség az akusztikában már XIX században ismert és igazolt volt. (A fenti eredmény csak közelítő jellegű, mivel a Galilei-féle relativitás elvének megfelelő transzformáció, amellyel az egyik koordináta rendszerből áttérünk a másikba, csak a fénysebességhez képest kis v sebességek esetében igaz. A pontos tárgyalásnál a Galilei-féle relativitást fel kell cserélni az Einstein-féle relativitás elvével és ennek megfelelően a két rendszer transzformációját Lorentz-transzformációval kell leírni, ld. a függeléket. A gyakorlatban szinte mindig teljesül az a feltétel, hogy v << c, ahol „c” a fénysebesség, ezért a kapott eredmények nagyon nagy pontossággal érvényben maradnak.) Felhasználva a
\[{{k = \frac{2\pi }{\lambda } és \omega = 2\pif}}\]
egyenleteket, a körfrekvenciáról áttérve frekvenciára kapjuk:
ahol a k és v vektor által bezárt szög koszinusza. Speciálisan, ha k és v azonos irányú, akkor , így:
és ha ellentétes irányúak, akkor , melyből:
Optikai keverés
Tekintsünk két különböző frekvenciájú ( és ), és azonos terjedési irányú (x) elektromágneses síkhullámot, ahol az egyik körfrekvencia időfüggő: . Ebben az esetben az elektromos térerősségek a következőképp írhatók fel:
ahol „c” a fénysebesség, pedig egy konstans fázistolás. Az eredő elektromágneses tér a kettő összege:
Helyezzünk az eredő tér egy adott pontjába (x) fényérzékelőt. Az érzékelő által szolgáltatott áram , ahol „P” a detektorra eső fényteljesítmény. A fényteljesítmény viszont az elektromos térerősség négyzetével arányos:
Ha ω2-t ω1-ből Doppler-eltolással állítjuk elő, és az alkalmazott sebességek nem relativisztikusak akkor ω2 csak nagyon kicsit tér el a konstans ω1-től. A továbbiakban egyszerűbb, ha az ω2 időfüggését egy külön taggal kezeljük, amely jóval kisebb ω1-nél.
Δω függését a koordinátarendszerek sebességétől lásd a következő fejezetben. Ekkor
Behelyettesítve (13)-ba a fenti összefüggést, és felhasználva, hogy
iD alakja a következő:
A detektor a ráeső teljesítmény időátlagát méri. Mivel fény esetén és ~1015 nagyságrendű, és ezt a frekvenciát a fényérzékelő nem képes követni, az első három tag iD kifejezésében kiátlagolódik. Felhasználva, hogy:
KÉPLET (18)
ahol < > az időátlagot jelenti. A detektor jelére azt kapjuk, hogy: KÉPLET (19)
Az időátlagolást a fenti kifejezésben a fényhullám periódusidejének néhányszorosára végeztük el (ahogy a detektor is teszi), ezért ha és elég közel esik egymáshoz, a (17) kifejezés negyedik tagja átlagolás után is megmarad, ugyanis az jóval nagyobb magánál és -nél. Amennyiben a különbségi körfrekvencia olyan kicsi, hogy az ebből eredő változást már a fényérzékelő is képes követni, a detektor kimenő jelében megjelenik egy, a két fény körfrekvencia-különbségével változó jel, melynek amplitúdója a két térerősség amplitúdójának szorzata. Bevezetve az intenzitásokra az és jelölést:
KÉPLET (20)
Az így kapott jel egyenáramú komponense a két fényhullám intenzitásának összegével arányos, ami e mérésben nem informatív, ezért elektronikus úton leszűrjük. A mért jel váltóáramú komponensét (iH) heterodin jelnek, az eljárást pedig heterodin keverésnek nevezzük:
(21)
Az optikai keverésnél az intenzitások közül az egyiket elektromos analógia alapján lokáloszcillátornak nevezik (I1), a másikat pedig jelintenzitásnak (I2). Fénydetektálás szempontjából az optikai keverésnek azért van nagy jelentősége, mert a keletkező heterodin jel frekvenciája jól meghatározott értékű, valamint megfelelő nagyságú lokáloszcillátor-intenzitás segítségével a szorzat még kis I2 mellett is megnövelhető. Így az optikai keverés kis fényintenzitások mérésének egyik alkalmas módszereként kínálkozik. Ha például egy detektor érzékenysége 1 mW, és ennél kisebb jelet, mondjuk 10 μW-ot akarunk vele mérni, akkor a 10 μW-os jelet összekeverve egy 1 W-os lokál-oszcillátor jelével, akkor kb. 3 mW-os kevert jel keletkezik, amely már mérhető az adott detektorral. A dolog szépséghibája, hogy a detektoron megjelenik egy nagy, jelen esetben 1 W-os egyenáramú jel is, ami az érzékelőt, vagy az elekronikus erősítőt telítésbe viheti.
Optikai keverés megvalósítása Doppler-effektus felhasználásával
Az optikai keverés megvalósításához egy interferométerre van szükség. Az 1. ábrán látható Michelson-interferométerben a két nyaláb a karokból a féligáteresztő lemezen egyesül úgy, hogy a detektort azonos ponton találja el, és irányuk is pontosan megegyezik (azaz k1 és k2 párhuzamos).
Mérési feladatok