Szilárdtestfelületek analízise Auger elektron spektroszkópiával

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Gall (vitalap | szerkesztései) 2012. november 14., 15:33-kor történt szerkesztése után volt.


Tartalomjegyzék


Szerkesztés alatt!

Elméleti összefoglaló

Az AES módszer fizikai alapjai

Pierre Auger francia fizikus röntgensugárzással gerjesztett argon atomok gerjesztési folyamatainak Wilson-féle ködkamrában történő tanulmányozása folyamán fedezte fel a róla elnevezett effektust 1925-ben. Ezt követően csak kb. 40 év után kezdődött el az AES módszer széleskörű gyakorlati felhasználása.

Napjainkban az AES módszert elsősorban szilárdtest felületek vizsgálatára alkalmazzák. Ennek folyamán a vizsgálandó felületet valamilyen primer gerjesztés hatásának tesszük ki, ami elsősorban 1-10 keV-os elektronnyalábbal való bombázást jelent, de elektromágneses sugárzás vagy ionnyaláb is lehet a gerjesztő hatás. Az ekkor végbemenő Auger-folyamatot az 1. ábrán szemléltetjük, és az alábbiak szerint értelmezzük.

az elektron gerjesztés Auger-folyamat elvi sémája 1. ábra

Egy belső, például a K-héjon lévő elektront a primer részecske eltávolít az atomi kötelékből. Az így szabaddá váló energianívóra egy magasabb, például az L1 nívóról lép be egy elektron. A felszabaduló energiát például az L2 nívón lévő elektron veszi át, ami egy jól meghatározott, karakterisztikus energiával kilép a felületből. Ezt az elektront nevezzük KL1L2, vagy általánosabban KLL Auger-elektronnak. Itt jegyezzük meg, hogy a gyakorlat számára legfontosabb, nagy elektronhozammal rendelkező Auger-elektronok esetén az Auger-folyamatban résztvevő második, és harmadik elektronhéj egybeesik, így az anyagok zöménél a KLL, LMM Vagy MNN Auger-elektronok a (leggyakoribbak. (Az Auger-spektroszkópia fizikai alapjairól és alkalmazási területeiről ad áttekintést az [1] , [2] , [3] szakirodalom.)

A K-héjon lévő megüresedett hely jelenléte esetén az L-héjon tartózkodó elektron energiaviszonyai hasonlóak azokhoz, melyekkel a hidrogénszerű ionokban lévő L-elektronok rendelkeznek. A finomstruktúrát most nem számítva, a küIönbség annyi, hogy a +Ze töltés (Z a rendszám, "e" az elemi töltés), amely meghatározza azt az elektromos teret, melyben az L-héjból a K-héjba átmenő elektron van, a mag +Ze valódi töltésénél a mag töltését leárnyékoló elektron töltésével kisebb. Természetesen a pontosabb leírásnál figyelembe kell azt is venni, hogy energetikailag három különböző L-állapot lehetséges. A továbbiakban tekintsük át röviden egy, az atomból emittálódó Auger-elektron energiáját meghatározó tényezőket. Egy tetszőleges, W X, és Y elektronhéjak által megvalósított Auger folyamatban keletkező Auger-elektron EW,X,Y(Z) energiája nemcsak az elektronhéjak EW, Ex és EY ionizációs energiáitól, illetve az illető elem Z rendszámától függ. Ezt az energiaértéket több tényező is befolyásolja, melyek közül a három legfontosabb a következő:

  • Az EW, Ex és EY értékek általában az egyszeresen ionizált állapothoz tartozó ionizációs energiák, míg az Auger-folyamatnál a végső állapot hétszeresen ionizált.
  • A szilárdtesteknél az elektronnak a vákuumba való vitelekor az energiamérlegnél figyelembe kell venni az elektron kilépési munkáját (Eki) is.
  • Az Auger-elektronok energiáját a mátrix-környezet is befolyásolja, vagyis az, hogy milyen elemekkel, vegyületekkel és milyen módon kötött az elektront emittáló atom.

Az első két szempontot is figyelembe véve, az Auger-elektron energiája az alábbi félempirikus összefüggéssel adható meg:

 
\[E_{WXY}(Z) =E_W(Z) - E_X(Z) - E_Y(Z + d) - E_{ki}\]
(1)

ahol a d korrekciós tag értéke az anyagi minőségtől függően 1/2 és 3/4 közé esik. Az Auger-energiák értekei a 2. ábrán tálhatók.

Fájl:A legfontosabb Auger elektron enegriák.JPG
A legfontosabb Auger elektron enegriák 2. ábra

A harmadik perturbáló hatást, az un. kémiai eltolódást (chemical shift) nehéz mennyiségileg pontosan meghatározni, mivel nagyságát 3 energiaszint változása is befolyásolja. Általában azt mondhatjuk, hogy egy WXY Auger-átmenetnél a kémiai eltolódás nagysága:

 
\[\Delta E = E_W - E_X - E_Y - \left (E_W + \Delta W - E_X - \Delta X - E_Y - \Delta Y \right )= \Delta W + \Delta X + \Delta Y\]
(2)

ahol a \setbox0\hbox{$\Delta W$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$\Delta X$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\Delta Y$}% \message{//depth:\the\dp0//}% \box0% a megfelelő W, X és Y elektronhéjak energiaeltolódósai, amelyeknek a mátrix- környezettől függő nagyságai nem egyenlőek. A helyzetet tovább komplikálja, ha az Auger-átmenetben a valencia-sáv is részt vesz.

A tanszéki Iaboratóriumban az AES méréseket egy un. SAM (Scanning Auger Microprobe) berendezésen végezzük. A SAM módszer az eddig tárgyalt AES módszertől elviekben nem különbözik, amennyiben a módszer alapja a SAM-nál is az emittált Auger-elektronok energiaanalízise, majd ez alapján a minta összetevőinek megállapítása. A különbség a két módszer között az, hagy a SAM-nál lehetőség van a primer elektronnyaláb pásztázására, és ezáltal egyrészt a vizsgálandó mintafelület topográfiai kepét lehet megjeleníteni, másrészt -és ez a fő előnye- a pásztázás révén mód van arra, hogy egyes kiválasztott elemeknek felvegyük és szükség esetén lefényképezzük a felületi eloszlás képét.

Az emittált Auger elektron-áramot meghatározó tényezők

Az előzőekben már láttuk, hogy a vizsgálandó mintafelületből a becsapódó primer elektronok karakterisztikus energiája Auger-elektronokat váltanak ki. Az alábbiakban ismertetjük az elektron hozamot meghatározó tényezőket. Legyen az i. elemben a WXY Auger-átmenetnél keletkező, és a \setbox0\hbox{$\Delta \Omega$}% \message{//depth:\the\dp0//}% \box0% térszögú akceptancia (fogadó) nyílással rendelkező AES berendezés által detektált Auger elektronáram \setbox0\hbox{$I_i(WXY)$}% \message{//depth:\the\dp0//}% \box0%. Ekkor első közelítésben:

 
\[I_i(WXY) = \frac{\Delta \Omega}{4\pi} \int\limits_0^{\infty} I_p(z) \cdot P_i(WXY) \cdot \sigma_i(E_W) \cdot N(z) \cdot X_i(z) \cdot F \left ( \alpha \right ) \cdot T(E_{WXY}) \cdot D(E_{WXY}) \cdot \exp \left [\frac{-z}{\lambda_i \cos \alpha}\right] dz\]
(3)

ahol

\setbox0\hbox{$I_p(z)$}% \message{//depth:\the\dp0//}% \box0% a gerjesztő áramerőssége mélységben,

\setbox0\hbox{$P_i(WXY)$}% \message{//depth:\the\dp0//}% \box0% annak a valószínűsége, hogy a gerjesztett atomnak a W-héj ionizációja után Auger-folyamat következik be,

\setbox0\hbox{$\sigma_i(E_W)$}% \message{//depth:\the\dp0//}% \box0% a W-héj ionizációs hatáskeresztmetszete,

\setbox0\hbox{$N(z)$}% \message{//depth:\the\dp0//}% \box0% a z mélységben lévő atomsűrűség,

\setbox0\hbox{$X_i(z)$}% \message{//depth:\the\dp0//}% \box0% az i. elem z mélységben lévő koncentrációja (atomtörtben),

\setbox0\hbox{$F(cx)$}% \message{//depth:\the\dp0//}% \box0% az \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% emissziós szögtől függő felületi érdességi faktor,

\setbox0\hbox{$T(E_{WXY})$}% \message{//depth:\the\dp0//}% \box0% az elektron energia spektrométer válaszfüggvénye,

\setbox0\hbox{$D(E_{WXY})$}% \message{//depth:\the\dp0//}% \box0% az elektron detektor transzmissziója,

\setbox0\hbox{$\lambda$}% \message{//depth:\the\dp0//}% \box0% az i. elemből kilépő elektron közepes szabad úthossza.

Megjegyezzük, hogy a kémiai környezet hatását beleértettük az egyes paraméterek értékeibe, tehát például a \setbox0\hbox{$P_i(WXY)$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$\lambda$}% \message{//depth:\the\dp0//}% \box0% értéke ugyanarra az i. elemre is más érték, attól függően, hogy tiszta anyagból, vagy kémiailag kötött állapotban lévő anyagból származnak az Auger-elektronok. Ha figyelembe vesszük a szögeloszlást is, azaz széles szögtartományban vizsgáljuk az Auger elektronhozamot, továbbá figyelembe vesszük azt, hogy a paraméterek egy része a gerjesztő primer energiától is függ, akkor a következő alakot nyerjük:

 
\[I_i(WXY) = \frac{1}{4\pi} \int\limits_{\Omega} \int\limits_0^{\infty} \int\limits_0^{(E_p)}I_p(E,z)\left [ I\neq r_b(E)\right] P_i(WXY) \cdot \sigma_i(E_pE_W) \cdot N(z) \cdot X_i(z) \cdot F(\alpha) \cdot T(E_{WXY}) \cdot D(E_{WXY}) \cdot \exp \left[ \frac{-z}{\lambda_i(E_p) \cdot \cos \alpha}\right] \cdot dE \cdot dz \cdot d\Omega\]
(4)

ahol rb a visszaszórási tényező. (A szakirodalomban szokásos az 1+rb értéket visszaszórási tényezőnek nevezni)

Általában elmondható, hogy a (4)-ben szereplő tényezők a kísérleti körülményeknek és a mátrix-környezetnek bonyolult függvényei. Az Ip-t alkotó primer elektronok energiájáról elmondható, hogy az Auger-elektronok szökési mélységén belül a primer energia csökkenése elhanyagolható.

A SAM berendezés ismertetése

A berendezés elvi felépítése 3. ábra


A vizsgálandó minta felületének gerjesztését fókuszált, mozgatható elektron nyalábbal végezzük, míg mintatisztítás, illetve mélységi elemeloszlás felvétel céljára ionnyalábbal való bombázásra is lehetőség van, amint ez a SAM berendezés elvi felépítését bemutató 3. ábrán látható. A készülék konkrét kezelésének bemutatatására a mérési feladatokat ismertető részben, a 7. ábra alapján kerül sor.

Az elektronágyú tartalmazza a volfrámszálas elektronforrást, a gyorsító, a fókuszáló és az eltérítő elektródákat. Az elektronágyú-szabályozó egység gondoskodik a fókuszáláshoz és gyorsításhoz szükséges feszültségekről és a katód fűtéséről. A pásztázást-szabályozó egység biztosítja a fókuszált elektron-nyaláb eltérítését, valamint a TV, illetve display egységnek az eltérítéssel szinkronizált- feszültséggel való ellátását.

A mintából emittált Auger-elektronok energia szerinti szétválasztását az elektronágyú köré elhelyezett CMA (hengeres tükör analizátor) típusú energiaanalizátor végzi. Az ilyen fajta energiaanalizátor a vizsgálni kívánt E energia \setbox0\hbox{$\Delta E$}% \message{//depth:\the\dp0//}% \box0% környezetébe eső energiájú elektronokat engedi át. A \setbox0\hbox{$\Delta E/E$}% \message{//depth:\the\dp0//}% \box0% mennyiség az analizátor energia-felbontása, ami az alkalmazott konkrét berendezésnél állítható, és 0,3%, 0,6% valamint 1,2% lehet. Az energiaanalizátor-szabályozó egység által szolgáltatott feszültség egy konkrét értékénél csak adott energiájú elektronok képesek a hengeres analizátor terét a szaggatott vonallal jelöIt pályán befutni.

A feszültség változtatásával tehát az elektronok energia spektruma vehető fel. Az energiájuk szerint megszűrt elektronok az elektronsokszorozóba kerülnek, majd jelerősítés után az Auger-spektroszkóp elektronikája dolgozza fel a továbbított elektromos jeleket differenciális üzemmódban. Az így előállított differenciális energiaspektrum írószerkezettel, vagy egyéb display egységgel jeleníthető meg.

A SAM berendezés a vizsgált minta felületének alapvetően kétfajta képét tudja előállítani. Az első fajta képpé a vizsgálatok elején a felületnek a vizsgálatok szempontjából érdekesebb részeiről való előzetes tájékozódás céljából felvehető az un. mikrográf vagy mikrodiagram, amely egy elektronmikroszkópos képre hasonlít, és a felület optikai képét adja. Ezt a képet vagy a szekunder elektronáramnak, vagy az elnyelt target-áramnak pontról-pontra történő regisztrálásával és megjelenítésével kaphatjuk meg. Az első esetben a képet röviden szekunder elektron-képnek, a második esetben abszorbeált áram-képnek nevezzük.

A másik fajta képet, amely egy adott elem felületi eloszlását mutatja, Auger eloszlás-képnek nevezik. Ez úgy készül, hogy a kérdéses elem adott energiájú elektronjaitól származó "Auger"-jeleket folyamatosan regisztráljuk, miközben a minta felületét folyamatosan pásztázzuk a primer elektronnyalábbal.

Lehetőség van az elemek mélység szerinti eloszlásának nyomon követésére is, mégpedig oly módon, hogy a primer ionágyúval előállított ionokkal bombázzuk a minta (target) felületét, amelyről folyamatosan porlódnak le az atomrétegek. Eközben a kiválasztott elemek Auger elektron intenzitásának folyamatos kijelzésével felvehető ezen elemek mélységi eloszlásgörbéje.

A SAM berendezés néhány fontosabb mérési paramétere a következő:

  • primer elektron energia:5 keV, de egyébként 0,5-10 keV között változtatható,
  • primer elektron áramerősség: általában néhány tized \setbox0\hbox{$\mu A$}% \message{//depth:\the\dp0//}% \box0%, de egyébként 2 \setbox0\hbox{$\mu A$}% \message{//depth:\the\dp0//}% \box0%-ig változtatható,
  • primer elektron nyaláb átmérő: kb. \setbox0\hbox{$5 \mu m/10 keV$}% \message{//depth:\the\dp0//}% \box0% és 10-7A értéknél), és kb. \setbox0\hbox{$10 \mu m$}% \message{//depth:\the\dp0//}% \box0% 15 keV és 10-6 A értéknél),
  • laterális felbontóképesség: kb. 5 \setbox0\hbox{$\mu m$}% \message{//depth:\the\dp0//}% \box0%, közel azonos a primer elektron nyaláb legkisebb átmérőjével,
  • energiafelbontóképesség: 0,3%, 0,6%, 1,2% /állítható/,
  • porlasztó ionenergia: 5 keV-ig változtatható,
  • porlasztó ionáram: 10-9 -10-6 A között állítható,
  • egyszerre behelyezhető minták száma: max.12 db,
  • kifűthetőség: 250 °C-ig,
  • sztatikus végvákuum: kb. \setbox0\hbox{$3\cdot 10^{-8} Pa$}% \message{//depth:\the\dp0//}% \box0%.

Mérési feladatok

Ötvözet-minta összetételének meghatárzása

A méréshez szükséges eszközök:

  • acél-etalon minta (a mérés kezdetén már a vákuumkamra mintatartójára helyezve),
  • SAM berendezés,
  • Vákuummérő,
  • Dewar-palack cseppfolyós nitrogénnel töltve.
Az elemek relatív Auger érzékenysége Ep 3kV 4. ábra
Az elemek relatív érzékenysége Ep 5kV 5. ábra
Az elemek relatív Auger érzékenysége Ep 10kV 6. ábra
SAM berendezés kezelőszervei 7.a. ábra
SAM berendezés kezelőszervei 7.b. ábra

Az előzőekben már láttuk, hogy az Auger-elektronok intenzitását számos mátrixfüggő és berendezésfüggő paraméter befolyásolhatja. Ezek közül sok paraméternek a hatásától eltekinthetünk, ha néhány egyszerűsítő körülménnyel és feltételezéssel élünk. Az első az, hogy az információs mélységen belül eltekintünk ugyanazon elem koncentrációbeli inhomogenitásaitól, tehát megelégszünk azzal, hogy a legfelső atomrétegek átlagos összetételét határozzuk meg. Ugyanakkor laterális vonatkozásban, a primer gerjesztő nyaláb keresztmetszetének megfelelő területen belül szintén eltekintünk a minta alkotóinak koncentrációbeli inhomogenitásaitól, tehát e tekintetben is csak átlagértéket határozunk meg. A következő egyszerűsítés az, hogy eltekintünk a felületi érdességi faktor szerepétől. Ezt azért vagyunk kénytelenek megtenni, mert a mérés (és a porlasztás) alatt egyszerűen nincs idő a minta egyedi felületi geometriai sajátságainak pontos feltérképezésére. Az ebből származó hibát úgy csökkentjük, hogy simára polírozott felületeket, vagy a gerjesztő elektronnyaláb alatt síknak tekinthető szemcsehatárokat vizsgálunk.

További egyszerűsítésre nyílik lehetőség, ha meggondoljuk, hogy a mátrixkörnyezet elsősorban az elemek legkülső elektronhéjainak energiaviszonyait befolyásolja, és a mélynívókra gyakorolt hatása sokkal kisebb jelentőségű, esetenként elhanyagolható. Így, ha a mennyiségi kiértékelésnél azokat az Auger elektronenergia csúcsokat használjuk fel, amelyeknek a kialakításában a mélynívók vesznek részi, akkor (hacsak nem kémiai vegyületet vizsgálunk) egy hasonló összetételű etalonmintával, vagy csak a vizsgált elemeket tartalmazó tiszta anyaggal történő összehasonlításnál az Auger-folyamat-keltés valószínűségében és az ionizációs hatáskeresztmetszetben fellépő változások elhanyagolhatóak. Továbbá, ha a vizsgált minta-ötvözet a periódusos rendszerben közeli rendszámú fémes elemekből áll, amelyeknél az elektron közepes szabad úthossz és a visszaszórási tényező értékek közel azonosak, akkor a mennyiségi kiértékelésre néhány százalékos relatív hibával alkalmas az un. relatív érzékenységi tényezők módszere. Ennél a módszernél a minták összetételének meghatározására felhasználjuk az ugyanazon típusú berendezésen egy ezüst-etalon mintára normált érzékenységi faktorokat a különböző elemek esetén (SX). Ezek az értékek : 3 keV, 5 keV és 10 keV primer elektronenergiákra a 4., 5. és 6, ábrákról olvashatók le.

Ezután a vizsgált minta x. komponensének koncentrációját a következő összefüggéssel számolhatjuk atomszázalékban:

 
\[{{C_x = \frac{I_x}{L_x \cdot E_{mx} \cdot I_{px} \cdot S_x} \bigg / \sum_{i=1}^n \frac {I_x}{L_x \cdot E_{mx} \cdot I_{px} \cdot S_x}} \cdot 100 }\]
(5)

ahol

  • Ii az i. komponens csúcstól-csúcsig mért Auger-elektron intenzitása
  • Si az i. elem relatív érzékenységi tényezője
  • Emi az i. elemnél alkalmazott modulációs energia
  • Li az i. elemnél alkalmazott erősítési tényező
  • Ipi az i. elemnél alkalmazott primer elektron áram

n a minta komponenseinek száma

Ha a mérések folyamán a SAM berendezés erősítési tényezőjét, modulációs energiáját és a primer elektron áramot nem változtatjuk (és a jelen esetben így fogunk eljárni), akkor (5) a következő egyszerűbb alakot ölti:

 
\[{{C_x = \frac{I_x}{S_x} \Big / \sum_{I=1}^n\frac{I_x}{S_x} \cdot 100}}\]
(6)

Ezek után az elvégzendő feladat egy ismeretlen összetételű acélminta komponenseinek kvalitatív, majd mennyiségi meghatározása. A mintának a mintatartóba történő behelyezése után, és a vákuumszivattyúk elindítását követően legalább egy nappal később kerüljön sor a mérésre a megfelelő nagyvákuum biztosítása céljából. A mintabetétel és a vákuumszivattyúk bekapcsolása a mérés kezdetére megtörtént. Közvetlenül a mérések megkezdése előtt a vákuumrendszer falába történő cseppfolyós levegő beengedésével javítsuk tovább a nagyvákuum értéket 10-7-10-8 Pa nyomás eléréséig. A vákuumszivattyúkat szabályozó egység a 7. ábrán látható 12. fiókban nyert elhelyezést.

Magát a mérést azzal kezdjük, hogy a mintát geometriailag optimális pozícióba hozzuk a 2000 eV-os rugalmasan szórt energiacsúcs mérésével. Ezt a mérés kezdetén a felügyelő tanár segítségével végezzük el. Ezután a 7. ábrán látható SAM berendezés 8., 10. és 11. fiókjának és a készülék TV¬monitorának képernyőjén az abszorbeált áramképek segítségével kiválasztjuk a vizsgálatokra legalkalmasabb homogén felületrészt, ami kiválásokat, inhomogenitásokat nem tartalmaz. A mérési hely pontos beállítását a SAM berendezésen a 8. fiókon a kép-pozícionáló egység X-Y jelzésű potenciométereivel végezhetjük.

Ezután a 7. jelű ionágyú-szabályozó egység alkalmazásával ionporlasztással megtisztítjuk a mintafelületet. Az ionporlasztást addig alkalmazzuk, amíg a mintafelületről származó szén- és oxigén-csúcsok eltűnnek, vagy minimális értéken stabilizálódnak. Az ion- és elektronáramot a 9. fiók digitális kijelzőjén olvashatjuk le.

Ezt követően kerül sor a minta Auger-elektronenergia spektrumának felvételére, célszerűen 5 keV-es primer elektronnyaláb alkalmazásával. A primer energiát a 11. fiók BEAM VOLTAGE feliratú potenciométerével állítjuk be. Az erősítési tényező és elektronsokszorozó nagyfeszültség értékeket úgy állítjuk be, hogy az Auger-energiacsúcsok legnagyobbika függőleges irányban közel kitöltse az írószerkezetre helyezett spektrumpapírt.

A primer elektronáram értékét \setbox0\hbox{$0,5-1 \mu A$}% \message{//depth:\the\dp0//}% \box0% között állítsuk be. Az erősítési tényezőt az 5. fiókon, az elektronsokszorozó nagyfeszültséget a 6. fiókon állítjuk be. A primer elektronáramot a 10. fiók EMISSION és CONDENSER LENS feliratú potenciométereivel állítjuk be, és a 9. fiók digitális kijelzőjén olvassuk le.

A spektrumfelvételt a 4. fiók START feliratú gombjának benyomásával indítjuk, mellyel egyidőben a 2. fiók írószerkezetén a tollat ráhelyezzük a spektrumpapírra. A folyamatosan, kb. 5 perc alatt kiíródó spektrum megjelenik az 1. fiók oszcilloszkópján is. A 3. fiókot, ami mélységi profilgörbe felvételét teszi lehetővé, ennél a mérésnél nem használjuk. Az aktuális Auger-elektronenergia értékeket a 4. fiók digitális kijelzőjén olvashatjuk le. A spektrumot elég a 0-1000 eV-os energiaintervallumban felvenni.

A spektrum felvétele után először a 2. ábrán látható Auger-elektronenergia táblázat felhasználásával azonosítjuk a mintát alkotó elemeket. Az azonosításnál célszerű annak figyelembevétele, hagy a fémek többségének több, karakterisztikus energiájú Auger-energiacsúcsa is van. A beazonosított elemek vegyjelét ceruzával írjuk rá a spektrumon lévő és az adott elemet reprezentáló csúcsra.

A mérési feladat második részében először olvassuk le mm-ben a beazonosított fém-komponensek fő Auger-csúcsainak csúcstól-csúcsig mért intenzitását. Ennek ismeretében, továbbá az 5. ábra és a (6) összefüggés segítségével határozzuk meg mennyiségileg is a minta összetételét. A mennyiségi meghatározás eredményét táblázatosan foglaljuk össze.

Kémiai eltolódás (chemical shift) vizsgálata

A méréshez szükséges eszközök:

  • 1 db szilícium-szilíciumdioxid minta ,
  • AES berendezés,
  • Vákuummérő,
  • Dewar-palack cseppfolyós nitrogénnel töltve.

Az előzőekben már volt arról szó, hogy a különböző kémiai környezet különbező mértékű eltolódásokat hozhat létre az Auger-elektronenergia csúcsok helyében. Ez az eltolódás különösen szignifikáns a kis energiájú Auger-elektronenergia csúcsoknál, amelyekhez tartozó átmenetekben a vegyértéksáv is részt vesz.

A kémiai eltolódás jól tanulmányozható a tiszta Si, illetve a SiO2 minták Auger - elektronenergia spektrumainak összehasonlításával.

A mérés kivitelezéséhez egy Si-hordozóra növesztett SiO2 réteget tartalmazó mintát helyezünk a SAM berendezés mintatartójába. Ez a mérés kezdetére már megtörtént. A mérések megkezdése előtt a megfelelő nagyvákuum biztosítása céljából az ezzel kapcsolatban a 4.1. pontban leírt műveleteket végezzük el. A mintát a mérés előtt geometriailag optimális pozícióba állítjuk a 2000eV-os rugalmasan szórt energiacsúcs mérésével.

Ezt követően a mintán az abszorbeált áram-kép megjelenítésével kiválasztjuk az optimális mérési helyet, a 4.1. pontban leírt módon. Ezután a 4.1. pontban leírt módon itt is alkalmazzunk egy rövid idejű ionporlasztást a felület tisztítása céljából.

Az ionporlasztással letisztított SiO2 réteg felületéről vegyünk fel egy Auger- elektronenergia spektrumot 5 keV primer elektronenergia alkalmazásával, melyet a 11. fiókon állítunk be. A primer elektronáram néhány tized mikroamper legyen. A spektrumfelvétel folyamata a 4.1. pontban leírtak szerint történjen, azzal a különbséggel, hogy ennél a mérésnél célszerű az energiaspektrumot a 0-100 eV-os intervallumban felvenni, amelyet a 4. fiók SCALE DIVISION potenciométerének 10-es állásba tevésével érhetünk el.

Ezután a mintát addig porlasztjuk az Ar-ionokkal, amíg teljesen leporlódik a SiO2 réteg, és elérjük a tiszta Si-hordozót. Ennek a folyamatnak a nyomon követésére a rétegporlasztás elején állítsuk be az oxigén Auger elektron-csúcsát az 1. fiók oszcilloszkópján és a porlasztást addig folytassuk, amíg az oxigén csúcsa eltűnik. Ezután a tiszta Si-rétegben ismét vegyünk fel a 0-100 eV-os intervallumban egy Auger-elektronenergia spektrumot. Ha az itt leírt mérésekhez változtatni kell az erősítési tényező, illetve az elektronsokszorozó nagyfeszültség-értékeket, akkor ezt az 5. fiók SENSITIVITY feliratú gombjának, illetve a 6. fiók potenciométereinek változtatásával érhetjük el.

A SiO2, illetve a Si rétegeken az előbbi módon felvett Auger-elektronenergia spektrumokon a vízszintes energia-tengelyen leolvassuk a szilícium kisenergiás, LMM átmenethez tartozó Auger-csúcsának a helyét. A két mintánál így megállapított energiaértékek különbségéből meghatározzuk a kémiai eltolódás mértékét.

Javasolt irodalom

  1. Gergely Gy: Szekunder emissziós spektrometria, AES, SEES, ELS. A szilárdtestkutatás újabb eredményei, Akadémia Kiadó, Budapest, 1979.
  2. Szilárd testek vizsgálata elektronokkal, ionokkal és röntgensugárzással. Szerkesztette: 4. Brümmer, J. Heydenreich, K.N. Krebs, N.G. Schneider. Műszaki Könyvkiadó, Budapest, 1984.
  3. Thompson, M.D. Baker, A. Christie, J.F. Tyson: Auger Electron Spectroscopy. John Wiley and Sons. N.Y.1985-86.