Vékonyréteg leválasztás
SZERKESZTÉS ALATT!!
Tartalomjegyzék |
Vákuumpárologtatás / vákuumgőzölés
A vákuumpárologtatás - vékonyrétegek előállítására szolgáló - fizikai gőzfázisú leválasztási eljárás (PVD, Physical Vapor Deposition). A leválasztani kívánt anyagot vákuumtérben - magas hőmérsékletre hevítve - elpárologtatják, majd az a bevonni kívánt munkadarab / hordozó / szubsztrát felületére lekondenzálva kialakítja a vékonyréteget.
Fizikai elméleti alapok
Egyensúlyi telített gőznyomás
Egy zárt rendszerben 0 K-nél magasabb, állandó T hőmérsékleten az anyag felületéről kilépő és a felületre visszatérő atomok dinamikus egyensúlyban vannak, melyet az adott hőmérséklethez tartozó P egyensúlyi telített gőznyomással (tenzióval) jellemezhetünk. Az egykomponensű rendszer két fázisának egyensúlyi feltételét a Clausius-Clapeyron egyenlet adja meg:
ahol a fázisátalakuláshoz szükséges moláris hőmennyiség, pedig a két fázis móltérfogatának különbsége .
Szilárd-gőz fázisátalakulás esetén a szilárd fázis moláris térfogata elhanyagolható a gőz fázis moláris térfogata mellett, így a (R: az egyetemes gázállandó) összefüggést az egyenletbe behelyettesítve az alábbi összefüggést kapjuk:
Az egyenlet integrálása után megkapjuk az egyensúlyi telített gőznyomás hőmérsékletfüggését:
ahol és az integrálási konstans anyagfüggők.
Az 1. ábra az egyensúlyi telített gőznyomás hőmérsékletfüggését mutatja különböző fémek esetén.
1. ábra: Az egyensúlyi telített gőznyomás (p) hőmérsékletfüggése különböző fémek esetén. |
Az 1. ábráról az alábbi következtetések olvashatók le:
- Adott fém esetén a hőmérséklet növelésével a gőznyomás több nagyságrendet is változik, ezért a vákuumpárologtatás során a rétegleválasztási sebesség széles határok között változtatható.
- A W, Ta, Nb, Mo fémek gőznyomása a legalacsonyabb adott hőmérsékleten, ezért - mint később látni fogjuk - ezeket a fémeket használják olyan esetekben, ahol magas hőmérsékleten alacsony gőznyomás szükséges.
Gőzök térbeli eloszlása (iránykarakterisztika)
Kisméretű síkforrás esetén (ld. 2. ábra) a irányú, szöghelyzetű, a forrástól r távolságban lévő, dA felületű hordozóra elpárologtatott dM(,) anyagmennyiség az alábbi koszinuszos összefüggéssel írható fel:
ahol M az összes elpárologtatott anyag tömege.
A fenti összefüggés alapján látható, hogy a hordozó felületére levált anyagmennyiség a forrás és a hordozó távolságának négyzetével fordítottan arányos. Ez csak akkor igaz, ha gőzatomok átlagos szabad úthossza sokkal nagyobb a vákuumkamra méreténél. Nagy gőznyomás (kis átlagos szabad úthossz) esetén figyelembe kell venni a gőzatomok egymással történő ütközését is. Ekkor r hatványkitevője 2-nél, hatványkitevője pedig 1-nél nagyobb értéket vesz fel.
2. ábra: Segédábra a kisméretű síkforrás iránykarakterisztikájának meghatározásához. |
Vákuumpárologtató berendezés felépítése
A vákuumpárologtatás alapfolyamatai:
- leválasztani kívánat anyag megfelelő nyomású gőzfázisának létrehozása,
- gőzrészecskék transzportja a hordozóig,
- gőzrészecskék kondenzációja a hordozón.
A vákuumpárologtatást speciálisan kialakított, vákuum-berendezésekben valósítják meg. Egy ilyen berendezés sematikus felépítése látható a 3. ábrán.
3. ábra: Vákuumpárologtató berendezés sematikus felépítése. |
A párologtató forrás az elpárologtatni kívánt anyagból (forrásanyag) és a forrástartóból áll. A forrástartóban melegítjük fel a forrásanyagot a kívánt hőmérsékletre. A forrástartó anyagával szemben támasztott követelmények: a) magas olvadáspont, alacsony tenzió; b) kicsi diffúziós állandó; c) ne ötvöződjön és ne lépjen kémiai reakcióba a párologtatandó anyaggal.
A leválasztani kívánt forrásanyag szilárd vagy folyadék halmazállapotú, melynek tisztasága nagymértékben befolyásolja a lekondenzálódó vékonyréteg szennyezettségét. Általában 5 9-es (99.999%), vagy annál tisztább anyagokat használnak.
A párologtatás megkezdésekor a hordozót mozgatható takarólemezekkel választják el a forrástól. A forrásból elpárologatott atomok a takarólemez nyitott állapotában érik el a hordozót.
A hordozó hőmérséklete a kondenzáció és a felületi migráció mértékét, ezáltal a leváló réteg szerkezetét, morfológiáját határozza meg. A hordozó fűtése lehetőségét nyújt a szubsztrát - rétegleválasztás előtti - tisztítására is.
A vákuumkamra kinyitása (fellevegőzése) előtt célszerű a kamrát száraz nitrogénnel feltölteni a vízgőz adszorpciójának megelőzése céljából. Meg kell különböztetni a kamra háttérnyomását az úgynevezett "üzemi" nyomástól. Háttérnyomás alatt a hideg kamrában előállított nyomást értjük, ami üzemi körülmények között (párologtatás alatt) nagyságrendekkel is megemelkedhet. A kamra elővákuumra történő leszívását általában rotációs szivattyúval biztosítják. A szükséges nagyvákuumot turbomolekuláris szivattyú, krioszivattyú, vagy olajdiffúziós szivattyú segítségével érik el. A cseppfolyós nitrogénnel hűtött kifagyasztó csapda alkalmazása előnyös, mivel javítja a háttérnyomást.
A berendezés háttérnyomása a leválasztott réteg tisztaságát határozza meg, kisebb háttérnyomás (kevesebb szennyező) esetén tisztább réteget kapunk. Adott háttérnyomás esetén a rétegleválasztási sebesség (elpárologtatott anyagmennyiség) növelésével érhető el tisztább réteg. Hatékony párologtatás esetén az elpárologtatandó anyagot olyan hőmérsékletre melegítik fel, amelyen az egyensúlyi telített gőznyomása 10-4 mbar-nál nagyobb (tipikusan 10-2 mbar), de a folyamatos elszívás (vákuumszivattyúk) következtében a vákuumkamrában a nyomása - a párologtatás során - ennél alacsonyabb. Egyenletes vastagságú vékonyréteg kialakulásához az szükséges, hogy az elpárologtatandó anyag gőzrészecskéi ütközés nélkül jussanak el a hordozóhoz. Ez akkor teljesül, ha a gőzrészecskék átlagos szabad úthossza nagyobb a forrás és a hordozó távolságnál. Például 10-100 cm forrás-hordozó távolság esetén a vákuumkamrában 10-5 mbar-nál kisebb nyomás szükséges.
Az elpárologtatott anyag mennyiségét megadó összefüggés alapján látható, hogy a hordozó felületére lekondenzált anyagmennyiség (rétegvastagság) függ a forrás és a hordozó távolságától, ezért az egyenletes rétegvastagság eléréséhez bonyolult mintatartó konstrukciókat alkalmaznak. Az egyszerű sík illetve kupola formájú mintatartók esetén (4. ábra) a réteg vastagsága 5-10%-ban tér el a mintatartó közepe és széle között. Bonyolult, planetáris mozgást végző sík illetve kupola formájú mintatartók (4. ábra) alkalmazásával a rétegvastagság eltérése 1%-ra csökkenthető.
Adott mintatartó konstrukció esetén a rétegvastagság szórása csökkenthető a forrás és a hordozó távolságának növelésével is. Ebben az esetben nagyobb vákuum (nagyobb szabad úthossz) szükséges ahhoz, hogy az elpárologtatandó anyag gőzrészecskéi ütközés nélkül jussanak el a hordozóig. Nagy forrás-hordozó távolság esetén viszont nagyobb forrásanyag veszteséggel kell számolnunk (a leváló anyagmennyiség a távolság négyzetének reciprokával arányos). A rétegvastagság szórása több forrás egyidejű alkalmazásával is csökkenthető.
Összefoglalva az eddig leírtakat. A vákuumpárologtatással leválasztott réteg minősége az alábbi főbb paraméterektől függ:
- vákuumkamra nyomása,
- forrásanyag (elpárolgatatandó anyag) és forrástartó tisztasága,
- forrásanyag gőznyomása,
- hordozó hőmérséklete,
- forrás és hordozó távolsága,
- mintatartó konstrukció.
4. ábra: Mintatartó konstrukciók. |
Vákuumpárologtató berendezések
Az elpárologtatandó anyag atomjait energiaközlés (fűtés) segítségével juttatjuk a gőzfázisba. Ez alapján megkülönböztetünk ellenállás-, elektronsugaras-, indukciós- és lézeres fűtésű forrásokat. A fűtés lehet közvetett vagy közvetlen is.