Tömegmérés rezonanciával és hangsebesség meghatározása

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Balogh (vitalap | szerkesztései) 2015. október 14., 11:12-kor történt szerkesztése után volt.


Új mérés! A leírás még készül!

A mérés célja:

  • megismerkedni a hangtani mérések alapjaival, valamint a Fourier-transzformációval és annak alkalmazásával
  • megismerkedni laboratóriumban használt Vernier LabPro számítógépes adatgyűjtő rendszerrel, és gyakorlatot szerezni a számítógéppel gyűjtött adatok feldolgozásában.

Ennek érdekében:

  • áttekintjük egy hangvilla és egy furulya (síp) működési elvét a legegyszerűbb tárgylás szerint
  • átismételjük a Fourier-transzformáció alapjait
  • méréseket végzünk a számítógépes adatgyűjtő rendszerrel, melynek keretében vizsgáljuk a megszólaltatott hangvilla és a furulya által keltett hangokat és meghatározzuk a levegőbeli fénysebességet
  • kiértékeljük az eredményeket IGOR Pro szoftverrel

Tartalomjegyzék


Elméleti összefoglaló

Bevezetés

A laborgyakorlat során egy hangvilla és egy saját készítésű furulya által keltett hangrezgéseket vizsgáljuk a Vernier LabPro nevű számítógépes adatgyűjtő rendszer és egy mikrofon segítségével.

Mérések hangvillával

A hangvilla egy U alakú, általában acélból készített hangkeltő eszköz, melyet megütéssel szólaltathatunk meg. Sajátos geometriájának köszönhetően az alaphangon kívüli rezgések gyorsan lecsengenek, így 1-2 másodperc után a kívánt stabil rezgést biztosítja, nagyon kevés és gyenge magasabb hang kíséretében. Ezért a tulajdonságáért kedvelt eszköz a zenészek körében a hangszerek behangolásakor. Az önmagában megszólaltatott hangvilla jellemzően kis hangerővel szól, melyet némiképp befolyásol a megütés ereje, azonban egy megfelelő méretű rezgődobozhoz való csatolással sokkal hatékonyabban növelhetjük a hangerejét. A laborgyakorlaton egy ilyen eszközt fogunk használni, ennek lényege, hogy a félig nyitott fadoboz átveszi a rajta elhelyezkedő hangvilla rezgését, és azt átadja a benne lévő „légoszlopnak”, így felerősítve hallhatjuk a hangvilla rezgése által keltett hangot. Egy hangvilla alaphangjának kiszámolása a alábbi képlet alapján történhet, ilyenkor fontos ismernünk a villa különböző geometriai paramétereit (l, A), Young-modulusát (E), sűrűségét (\setbox0\hbox{$\rho$}% \message{//depth:\the\dp0//}% \box0%) és másodrendű nyomatékát (I).

\[ f = \frac{1.875^2}{2\pi l^2} \sqrt\frac{EI}{\rho A}\]

Ezt azonban egyszerűbb módon is elvégezhetjük, ha a csatolt rezgődobozt vizsgáljuk. Azt feltételezve, hogy a doboz a hangvillára van hangolva, a doboz hossza alapján megállapított frekvencia megegyezik a hangvilla frekvenciájával.

Egy ilyen rezgődobozban kialakuló állóhullámokra teljesül, hogy a doboz nyitott végénél duzzadó helyük van, míg a zárt végen csomópont alakul ki. Azaz \setbox0\hbox{$4L$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$4/3L$}% \message{//depth:\the\dp0//}% \box0%,\setbox0\hbox{$4/5L$}% \message{//depth:\the\dp0//}% \box0%, stb. hullámhosszú állóhullámokat várhatunk, melyek közül a \setbox0\hbox{$4L$}% \message{//depth:\the\dp0//}% \box0% hosszú alaphang lesz a hallható a tranziensek gyors elhalása után.

Ezzel a frekvencia egyszerűen kiszámolható a \setbox0\hbox{$c=\lambda*f$}% \message{//depth:\the\dp0//}% \box0% képlet alapján, ahol \setbox0\hbox{$c$}% \message{//depth:\the\dp0//}% \box0% a hangsebesség levegőben, \setbox0\hbox{$\lambda$}% \message{//depth:\the\dp0//}% \box0% az állóhullám hullámhossza és \setbox0\hbox{$f$}% \message{//depth:\the\dp0//}% \box0% a hang frekvenciája. Ha megvizsgáljuk a hangvilla frekvenciáját megadó korábbi képletet, négyzet alapú villaágakat feltételezve a másodrendű nyomaték \setbox0\hbox{$I/A=a^2/12$}% \message{//depth:\the\dp0//}% \box0%-nek adódik, ahol \setbox0\hbox{$a$}% \message{//depth:\the\dp0//}% \box0% a négyzet oldalhossza. A Young-moduluszt beírva a képletet átalakítva azt láthatjuk, hogy megjelenik benne a villa ágainak tömege, mint paraméter.

\[f = \frac{1.875^2}{2\pi l^2} \frac{a}{l} \sqrt\frac{D}{m}, EZT AT KELL GONDOLNI\]

Ebből kifolyólag, ha változtatjuk a villa ágainak tömegét, akkor annak elhangolódik a frekvenciája. Ezzel az elvvel a hangvilla tömegmérésre is használható, ha a mérendő tömeget ráhelyezzük a villa egyik ágára, az elhangolja a frekvenciát és ebből meghatározható a tömeg nagysága.

Ennél a leegyszerűsített leírásnál két fontos dolgot kell figyelembe vennünk: egyrészt, a mérendő tömeg anyaga és geometriája eltérő lehet, mint a villa paraméterei, így a fenti képlet nem alkalmazható a frekvencia kiszámolására. Ehelyett egy kalibrációt kell készítenünk, hogy különböző tömegek mennyire hangolják el a villa frekvenciáját. Természetesen az elv akkor működik, amikor az ismeretlen tömeg jóval kisebb, mint a hangvilla tömege.

Másik fontos megjegyzés, hogy a hangvilla előnye, a felharmonikusok gyors lecsengése, főként a nagyon precízen egyformára kialakított villaágaknak köszönhető. Így, amennyiben egy tömeget helyezünk az egyik ágra, ezt a precíz kialakítást elrontjuk. Ezért a mérés során a tömeg rögzítésére használt mágneseket nem csak az egyik ágra helyezzük, hanem mindkettőre, így biztosítva, hogy a villa kialakításának elrontása lehetőleg kicsi legyen.

Mérések furulyával

A gyakorlat egyik feladata egy furulyaszerű hangszer elkészítése és ennek vizsgálata. Az elkészítés pontos menete a Mérési feladatok között olvasható.

A furulya működésének alapja, hogy a hangszerben egy olyan rezgő légoszlop tud kialakulni, amelynek frekvenciája a kívánt zenei hangot adja. A hangszer felépítése egyszerű, így kevés barkácsolással könnyen elkészíthető. A furulya egy hosszú csőből áll, aminek anyaga jellemzően fa (esetleg műanyag). Ezt a csövet nevezik a furulya testének. A test egyik végén, ahol a hangszerbe a levegőt fújjuk, egy keskeny, a levegő áramlását irányító rés helyezkedik el, majd ezt követi az úgynevezett labium (ajak), ami a hangszer talán legfontosabb része, mivel itt keletkezik a hang.

Amikor a furulyába belefújunk, a beáramló levegő a labiumon „megtörik” és örvények keletkeznek, ezáltal a furulyában lévő légoszlop rezgésbe jön és hang keletkezik. A hang keletkezésének elve hasonló, mint a hangvillánál használt rezgődoboznál, így a furulya alaphangját egyszerűen kiszámolhatjuk annak hosszából. A rezgődoboz egyik vége a labium lesz, itt duzzadó helye van az állóhullámnak, míg a másik vég a furulya vége, ahol szintén egy duzzadó hely lesz. Így a kialakuló állóhullámok rendre \setbox0\hbox{$2L$}% \message{//depth:\the\dp0//}% \box0%,\setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%,\setbox0\hbox{$2/3L$}% \message{//depth:\the\dp0//}% \box0% hullámhosszúak lesznek, azaz az alaphang hullámhossza \setbox0\hbox{$2L$}% \message{//depth:\the\dp0//}% \box0%.

Egy furulyával lehetőségünk van különböző hangok keltésére is, mely a testen található megfelelő lyukak lefogásával illetve elengedésével érhető el. Röviden összefoglalva a lyukak szerepe az, hogy rövidítsék a rezgő légoszlop hosszát, mivel ilyenkor nem a furulya végén alakul ki duzzadó hely, hanem a lyuknál, így, mivel a labium és a lyuk közötti távolság rövidebb, magasabb hangon fog szólni a furulya.

A gyakorlat során az egyszerűség kedvéért mi egy kicsit eltérő módon használjuk a furulyát, az egyik végét lezárjuk egy hosszú rúddal, melyet mozgatni tudunk. Így egy félig zárt rezgődobozt hozunk létre, a rúd mozgatásával pedig ennek hossza változtatható, így különböző hullámhosszú rezgéseket vizsgálhatunk majd.

Hangtani mérések elemzése

A fentebb leírt eszközök által keltett hangok vizsgálatához valamilyen módon rögzítenünk kell azokat. Erre a célra egy mikrofont használunk majd, melyet egy XXXX digitális oszcilloszkóphoz csatlakoztatunk. Ez az oszcilloszkóp lehetőséget nyújt a mikrofon jelének, azaz az eszközök hangjának széleskörű vizsgálatára. A beépített mikroszámítógép segítségével maga az oszcilloszkóp képes különféle kiértékelések elvégzésére, az adatok elmentésére (pendrive-ra). A hangtani mérések során ezen funkciók közül a legfontosabb az ún. Fourier-transzformáció lesz.

Egy hangszer által kiadott tiszta hang egy frekvenciájú periodikus jelnek felel meg, melyben az alaphangnak megfelelő frekvenciás szinuszos rezgés mellett az alaphang felharmonikusai is szerepelnek. Ez matematikailag a Fourier-sorfejtés segítségével fogalmazható meg. Vegyünk egy tetszőleges \setbox0\hbox{$ \nu $}% \message{//depth:\the\dp0//}% \box0% frekvenciás \setbox0\hbox{$f(t)$}% \message{//depth:\the\dp0//}% \box0% jelet, melyre:

\[f ( t ) = f \left( t + \frac{n}{\nu} \right)\]

tetszőleges \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% egész számra. Ez a függvény kifejthető a következő ún. Fourier-sorral:

\[f ( t ) = \displaystyle\sum\limits_{n=1}^{\infty} A_n \sin \left( 2 \pi n \nu t + \varphi_n \right)\]

ahol az \setbox0\hbox{$A_n$}% \message{//depth:\the\dp0//}% \box0% ill. \setbox0\hbox{$\varphi_n$}% \message{//depth:\the\dp0//}% \box0% megadják, hogy a jelben milyen amplitúdóval és milyen fázistolással szerepel az \setbox0\hbox{$n \nu$}% \message{//depth:\the\dp0//}% \box0% frekvenciájú felharmonikus. Azonos hangmagasságon megszólaltatott különböző hangszerek a felharmonikusok eltérő amplitúdói és fázisai miatt szólnak másként.

Ha a jelünk nem periodikus, akkor is felbonthatjuk különböző frekvenciájú komponensekre. Ezt a műveletet hívjuk Fourier-transzformációnak:

\[F(\nu)=\int\limits_{-\infty}^{\infty} f(t) e^{-{\rm i}2\pi\nu t} {\rm d}t\]

ahol \setbox0\hbox{$F(\nu)$}% \message{//depth:\the\dp0//}% \box0% megadja, hogy egy adott \setbox0\hbox{$\nu$}% \message{//depth:\the\dp0//}% \box0% frekvenciájú komponens mekkora járulékot ad a jelünkhöz. \setbox0\hbox{$F(\nu)$}% \message{//depth:\the\dp0//}% \box0% komplex szám, melynek abszolút értéke adja meg a \setbox0\hbox{$\nu$}% \message{//depth:\the\dp0//}% \box0% frekvenciás komponens amplitúdóját, fázisa pedig a fázistolást. Ha a Fourier-transzformációt egy periodikus jelre alkalmazzuk, akkor az alapfrekvenciánál (\setbox0\hbox{$\nu$}% \message{//depth:\the\dp0//}% \box0%), és a felharmonikusoknál (\setbox0\hbox{$n \nu$}% \message{//depth:\the\dp0//}% \box0%) kapunk csúcsokat, melyek nagysága megadja a különböző felharmonikusok amplitúdóját.

Mérésekben a jelünket csak diszkrét \setbox0\hbox{$t_n$}% \message{//depth:\the\dp0//}% \box0% pontokban ismerjük, így a fenti folytonos Fourier-integrált is ún. diszkrét Fourier-transzformáció (DFT) helyettesíti:

\[F(\nu)=\displaystyle\sum\limits_{n=1}^{N} f(t_n) e^{-{\rm i}2\pi\nu t_n} \cdot\Delta t_n\]

A diszkrét Fourier-transzformáció hatékony kiszámítására különböző algoritmusokat használhatunk, melyek közül kiemelkedően fontos az ún. FFT, "Fast Fourier Transformation".

A diszkrét Fourier-transzformáció fontos összefüggése a Nyquist-Shannon-féle mintavételezési tétel. Ha egy időfüggő jelből \setbox0\hbox{$t$}% \message{//depth:\the\dp0//}% \box0% idő alatt \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0%-szer veszünk mintát ekvidisztáns \setbox0\hbox{$\Delta t = t/N$}% \message{//depth:\the\dp0//}% \box0% időközönként, akkor a vett mintából a teljes spektrum csak \setbox0\hbox{$f_{max}=N/(2t)$}% \message{//depth:\the\dp0//}% \box0% maximális frekvenciáig, \setbox0\hbox{$\Delta f =1/t$}% \message{//depth:\the\dp0//}% \box0% feloldással rekonstruálható. Másként kimondva, ha egy \setbox0\hbox{$f_{max}$}% \message{//depth:\the\dp0//}% \box0% frekvenciánál nagyobb frekvenciakomponenst nem tartalmazó (sávkorlátozott) jelet akarunk mintavételezni, akkor legalább \setbox0\hbox{$2 f_{max}$}% \message{//depth:\the\dp0//}% \box0% mintavételi frekvenciával kell mérni. A mérés hossza pedig a frekvenciafölbontást javítja.

A mérésben egy hangvilla és egy furulyában levő levegőoszlop rezgéseit vizsgáljuk. Ahogy már említettük, a hangvillára jellemző, hogy rezgési spektrumában csak az alaphang szerepel, nincsenek felharmonikusok. Az általunk használt furulyát egy egyik oldalán zárt sípnak tekinthetjük, melyben ideális esetben \setbox0\hbox{$\lambda=4L/(2n+1)$}% \message{//depth:\the\dp0//}% \box0% hullámhosszú állóhullámok alakulhatnak ki, ahol \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0% a furulya hossza a labium és a lezárt vég között, \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% pedig egy egész szám. A fenti feltétel abból ered, hogy a labiumnál az állóhullámok duzzadóhelyei, a lezárt végnél pedig csomópontok találhatók. Az így kialakuló rezgések frekvenciái:

\[\nu=\frac{c}{\lambda}=\frac{c}{4L}(2n+1)\]

ahol \setbox0\hbox{$c$}% \message{//depth:\the\dp0//}% \box0% a hang terjedési sebessége levegőben. Látszik, hogy félig zárt síp hangjában csak az alaphang páratlan felharmonikusai szerepelnek.

A Vernier LabPro interfész használata

2.ábra: Vernier LabPro interfész

A méréseket a 2. ábrán látható Vernier LabPro interfész segítségével végezzük, melyhez különböző szenzorok csatlakoztathatók. A mérés során két feszültségszenzort ill. egy mikrofont használunk. Az interfész soros vagy USB porton keresztül csatlakoztatható a számítógéphez, és a szenzorok jelét a Logger Pro szoftver segítségével rögzítjük.

A szoftver elindítása után először be kell állítani, hogy milyen szenzorral (szenzorokkal) kívánunk mérni. A 3. ábrán látható ablakhoz az Experiment/Set Up Sensors/ Show All Interfaces gombokkal juthatunk el. Az ábrán látható beállításban az interfész CH1-es és CH2-es bemenetére egy-egy feszültségszenzor van csatlakoztatva.

A következő feladat az adatgyűjtés paramétereinek megadása. Az Experiment/Data Collection/Sampling gombokkal a 4. ábrán látható Data Collection ablakhoz jutunk. Itt állíthatjuk be a mérés hosszát és a mintavételezési frekvenciát. (A többi beállítást hagyjuk alapértéken!)

Szmg uj2.jpg
Szmg uj4.jpg
3.ábra: A szenzorok beállítása 4.ábra: Az adatgyűjtés beállítása

Mindkét mérésnél célszerű a mérőrendszert oszcilloszkóphoz hasonló üzemmódban használni. Ehhez a Data Collection ablakban állítsunk be ismétlődő mintavételezést (repeat), melynek hatására a beállított mérési hossz eltelte után újra kezdi a mérést a rendszer. A mintavételezést a Data Collection ablak Trigger fülében szinkronizálhatjuk a mért jel periódusával. Az 5. ábrán látható beállítás esetén a mintavételezés mindig akkor kezdődik, mikor a mért jel (CH1) értéke pozitív meredekséggel átlépi a beállított 4 V-os küszöbszintet.

Az Options/Graph Options/Axis Options gombok segítségével jeleníthetjük meg a 6. ábrán látható ablakot, ahol a grafikon tulajdonságait állíthatjuk be.

Szmg uj5.jpg
Szmg uj3.jpg
5.ábra: Trigger beállítása 6.ábra: A grafikon beállítása

A mérést a fő ablakban (7. ábra) található Collect/Stop gombbal indíthatjuk el, ill. állíthatjuk le.

Szmg uj1.jpg
7.ábra: Logger Pro főmenü

A mérés végén az adatokat nem a Save utasítással kell elmenteni (ekkor olyan fájlt kapnánk, amit később is csak ezzel a programmal tudnánk megnyitni), hanem exportálni kell (File/Export As/Text')! Az így elmentett textfájlokat később bármely más adatkezelő programmal (Igor Pro, Excel, stb.) meg lehet nyitni.

Furulya készítése

A furulya készítésének leírását az Ezermester c. újság 1998-as márciusi kiadásának alapján készítettük, a laborgyakorlatnak megfelelően átírva. Az eredeti leírás ezen a linken olvasható.

Furulya schematic.png
xxxxx.ábra: Furulya sematikus vázlata
  • A furulya testének kiválasztása
A korábbi képletek alapján számolja ki, hogy milyen hosszúságú furulyatestet kell használnia a xxxHz-es alaphang megszólaltatásához. Vegye figyelembe, hogy a test hossza 4-5 cm nagyobb kell legyen, mint a valós rezgőcső hossza.
Vágjon le egy megfelelő hosszúságú darabot a műanyagcsőből!
  • A labium kialakítása
Ez a furulyakészítés legnehezebb művelete, mivel a megfelelően kialakított ajak a kulcsa a tiszta hang keltésének.
A cső egyik végétől mérjünk le 2 cm-t, majd egy szikével merőlegesen vágjuk be a csövet kb 5mm-nyire. Ettől a vágástól mérjünk le további 1 cm-t (azaz a végtől 3cm-t), majd innen a korábbi bevágásig ferdén vágjuk be a csövet, ezzel egy ék alakot kiformázva. Érdemes először kisebb meredekségű bevágást ejteni és utána korrigálni, nehogy túl mély éket alakítsunk ki.
  • Labium formázása
Az előző lépésben készített ékalak éle egyenetlen lesz, ami rontja a furulya hangjának minőségét, nehéz lesz megszólaltatni és levegősen fog szólni. Ezen javíthatunk, ha egy reszelővel eldolgozzuk a vágáskor kialakult sorját, valamint az ékalakot szabályosra formázzuk. A reszelővel óvatosan dolgozzunk, mert túlreszelve elrontható az eddigi munkánk.
  • Befúvónyílás kialakítása
A furulya ék felőli végén ki kell alakítanunk egy, a test belső átmérőjéhez képest keskeny, nyílást, ez lesz a befúvónyílás. Ehhez vágjunk le egy kb. 2 cm hosszú darabor a farúdból, a pontos méretet az ék kezdete és a test végének megfelelően mérjük le. Ebből a fadarabból egy szike segítségével hasítsunk le egy darabot, enyhén átlósan, azaz egyik végén kicsit több anyagot szedjünk le. Ezt is érdemes kisebb lépésekben végezni, különösen ügyelve a balesetek elkerülésére!
Amint elkészül a kívánt alak, helyezzük bele a furulya végébe. Ha nem szorul a fadarab a furulya testében, szigetelőszalaggal körbetekerve növelhetjük a vastagságot.
  • Lezáró rúd elkészítése
Az előző lépések végén a furulya az alaphangon megszólaltatható, ha a végét kezünkkel befogjuk. Más hangok keltéséhez azonban lyukak kialakítása helyett a furulya testének hosszát fogjuk változtatni. Ehhez egy olyan lezárást készítünk, aminek pozíciója változtatható a furulya testében.
A rendelkezésre álló farúdból mérjen le egy akkora darabot, ami elég hosszú, hogy a furulyában elérjen a labiumig, valamint ilyen, teljesen betolt pozícióban is lógjon ki elegendő rész a mozgatáshoz.
A rúd egyik végét tekerje be szigetelőszalaggal, úgy, hogy lezárja a furulya testét, de könnyen mozgatható legyen benne. Itt is érdemes több lépésben dolgozni, ne legyen túl vastag a szigetelőszalag réteg. Végül kenje be a szigetelőszalagot vákuumzsírral, ezzel elősegítve a könnyebb mozgatást és a jobb tömítettséget.

Ezzel a saját készítésű furulya elkészült, amennyiben a labium kialakítása megfelelő, könnyen megszólaltatható és különböző hullámhosszú hangok kelthetők.



Mérési feladatok

A méréshez rendelkezésre álló eszközök

  • A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.

Hangvilla vizsgálata

1. Mérje meg a hangvilla frekvenciáját az oszcilloszkóp segítségével! Állítson be egy megfelelő mintavételezési időt úgy, hogy a képernyőn legalább 10 periódus látszódjon. Üsse meg a hangvillát, majd a tranziensek elhalása után, amikor az oszcilloszkópon szabályos szinuszos jelalak látható, állítsa le a mérést.

  • Az oszcilloszkóp megfelelő beállításához számolja ki a hangvilla frekvenciáját kétféle módon (hangvilla paraméterei, rezgődoboz mérete)! A kapott értékeket vesse össze! Melyik módszerrel számolt frekvenciának nagyobb a hibája?
  • A méréshez egy oszcilloszkópra kötött mikrofont használunk. Hova célszerű helyezni a mikrofont a méréskor?

2. Határozza meg a hangvilla frekvenciáját gyors Fourier-transzformációval (FFT)! Ehhez állítsa az oszcilloszkópot FFT módba és válasszon megfelelő időalapot, valamint FFT ablakot.

  • Mi alapján határozza meg az optimális időalapot? Milyen frekvencia felbontással tud így mérni? Miért fontos a mérésnek megfelelő FFT ablak kiválasztása?
  • Próbáljon ki több FFT ablakot és időalapot, majd írja le tapasztalatait!

3. Vizsgálja meg, milyen mértékben rontja el a hangvilla tulajdonságait a paramétereinek változtatása! Először helyezzen egy mágnest az egyik ágra és vizsgálja a felharmonikusok megjelenését. Ezután helyezzen egy ugyanilyen mágnest a másik ágra, minél pontosabban a másik mágnessel megegyező helyre. Szintén vizsgálja meg a felharmonikusok megjelenését, valamint minél pontosabban határozza meg az így kialakított hangvilla frekvenciáját. Határozza meg a mágnesek tömegét a frekvencia eltolódásából!

  • Milyen irányú frekvenciaeltolódást vár a mágnesek felhelyezésekor? Becsülje meg ennek mértékét! (mágnes mérete, tömege, villa tömege, paraméterei, stb. becslése)
  • Ha azzal a feltételezéssel élünk, hogy a felhelyezett mágnesek csak a villa tömegét módosítják, a frekvencia eltolódásából meghatározható a mágnesek tömege. Fejezze ki a mágnesek tömegét a mért frekvenciákkal!

4. Mérje meg különböző ismert tömegek esetén a frekvencia eltolódást és készítsen kalibrációs görbét, ami alapján egy ismeretlen tömeg által okozott frekvencia eltolódásból meghatározható a tömeg mértéke! Határozza meg, milyen felbontással tud ezzel a módszerrel tömeget mérni!

  • Az előző feladatban azt feltételeztük, hogy a villára helyezett tömeg egyszerűen csak a villa tömegét módosítja. A fenti képleteket áttekintve látható, hogy ez egy jó közelítés, de pontos méréshez nem lesz megfelelő. Mivel egy így kialakított rendszer esetén a számítások bonyolultak, nem a képletek alapján célszerű számolni, hanem inkább ismert tömegekkel kalibrálni az eszközt.
  • Gondolja át a mérés lehetséges hibáit, ezeket jegyezze le a mérési naplóba is!

5. Határozza meg két ismeretlen tömeg mértékét minél pontosabban!