Nagyfrekvenciás jelek terjedésének fizikai alapjai

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Vighmate (vitalap | szerkesztései) 2018. március 1., 15:53-kor történt szerkesztése után volt.

Tartalomjegyzék


Bevezetés


A laborgyakorlat célja, hogy a nagyfrekvenciás (\setbox0\hbox{$f>1-10$}% \message{//depth:\the\dp0//}% \box0% MHz) méréstechika és jelátvitel területén felmerülő alapfogalmakat és jelenségeket bemutassa. A legfontosabb amit érdemes megjegyezni az, hogy az alacsony frekvenciás hálózatok vizsgálatakor megszokott leírásmódok nagyobb frekvenciákon érvényüket vesztik, és a hagyományos áramköri jelenségeken túlmutató, szokatlan jelenségek lépnek fel, mint pl. a jelek reflexiója. A fizika szempontjából itt a Maxwell-egyenletek nagyfrekvenciás, azaz hullámjelenségeket is figyelembe vevő alkalmazásáról van szó kábelek esetére.

A XIX. század közepén felmerült az igény a nagy távolságokra történő adattovábbításra, akár kontinensnyi távolságokban, pl. tenger alatti kábelek segítségével. (Az első transzatlanti kábelt 1858-ban helyezték üzembe.) Hamar kiderült, hogy a vezetékben történő jeltovábbításánál lényeges a hullámjelenségek figyelembevétele. Ez a technológiai fejlődés és igény az elméleti leírásra időben közel volt a Maxwell-egyenletek (1861) megszületéséhez. A vezetékben terjedő hullámjelenségek leírását ma mint az ún. távíróegyenleteket ismerjük. Ez a Maxwell-egyenletek által megjósolt elektromágneses hullámjelenségek egyik gyakorlati alkalmazása, és e leírás gyakorlati sikere is inspirálóan hatott az elektromágneses sugárzás későbbi felfedezésére (Hertz, 1886).

A fizikus tanulmányok során eddigiekben felmerült egyenáramú (DC) és alacsony frekvenciás váltóáramú (AC) hálózatok vizsgálatakor nem törődtünk azzal, hogy a jel terjedési sebessége véges. Feltételeztük, hogy adott ponton feszültséget kapcsolva egy áramkörre az pillanatszerűen megjelenik minden azonos potenciálú helyen. Mindez nyilvánalóan érvényét veszíti, amikor a jel számára szükséges terjedési idő, \setbox0\hbox{$t=d/c$}% \message{//depth:\the\dp0//}% \box0% (itt \setbox0\hbox{$d$}% \message{//depth:\the\dp0//}% \box0% a kábel hossza, \setbox0\hbox{$c$}% \message{//depth:\the\dp0//}% \box0% a közegben érvényes fénysebesség), összemérhető a jel periódusidejével: \setbox0\hbox{$t \approx 1/f$}% \message{//depth:\the\dp0//}% \box0% (a gyakorlatban inkább a \setbox0\hbox{$10 \cdot t \approx 1/f$}% \message{//depth:\the\dp0//}% \box0% feltétel a használatos). Például a transzatlanti kábel esetére az így kapott frekvencia \setbox0\hbox{$f=6$}% \message{//depth:\the\dp0//}% \box0% Hz. Ez az eredmény azt jelenti, hogy a hullámjelenségek figyelembe vétele nélkül a transzatlanti kommunikáció csak ennél lényegesen alacsonyabb frekvencián, mai szóhasználattal kb. \setbox0\hbox{$6$}% \message{//depth:\the\dp0//}% \box0% Hz sávszélességen (azaz 6 bit/sec) mehetne csak végbe.

A hullámjelenségek figyelembevétele a modern kommunikációs eszközöknél még fontosabb, mivel pl. 9 GHz-es vivőfrekvenciára (ami egy elterjedt kommunikációs sáv) a hullámhossz mindössze 3 cm. Egy másik gyakorlati példánk a számítógépek, melyek tipikusan 2-3 GHz-es jelekkel dolgoznak (\setbox0\hbox{$\lambda \approx 10~\textrm{cm}$}% \message{//depth:\the\dp0//}% \box0%), melyeket 10-20 cm távolságra juttatnak el, így itt nyilvánvalóan szükséges a hullámjelenségek figyelembevétele az áramkörök tervezésekor. A későbbi tanulmányaink során hasonló jelenségekkel találkozhatunk az Önálló labor tárgy NMR (magmágneses-rezonancia) és ESR (elektronspin-rezonancia) laborgyakorlatain.

Elméleti háttér

A távíróegyenletek


Tekintsük a jelet továbbító vezeték egy infinitezimálisan kicsi darabját, ami az 1. ábrán látható. Ezt legáltalánosabban egy soros, ún. elosztott ellenállás, \setbox0\hbox{$\widetilde{R}$}% \message{//depth:\the\dp0//}% \box0% (egysége Ohm per méter), elosztott induktivitás, \setbox0\hbox{$\widetilde{L}$}% \message{//depth:\the\dp0//}% \box0% (egysége Henry per méter), elosztott kapacitás, \setbox0\hbox{$\widetilde{C}$}% \message{//depth:\the\dp0//}% \box0% (egysége Farád per méter), és a két drót közti elosztott vezetés, \setbox0\hbox{$\widetilde{G}$}% \message{//depth:\the\dp0//}% \box0% (egysége Siemens per méter) jellemzi. A soros ellenállás oka a vezetékdarabokban lévő veszteség, az induktivitás oka pedig az, hogy az egyes drótdarabokat mágneses tér veszi körbe, ezért lesz egyetlen drótszálnak is önindukciója. A \setbox0\hbox{$\widetilde{G}$}% \message{//depth:\the\dp0//}% \box0% írja le a két vezetékdarab közti elektromos vezetést, ami akkor is jelen van, ha nagyon jó dielektrikum választja el a két vezetőt egymástól. Mivel a két drót nincs azonos potenciálon, ezért lesz köztük a \setbox0\hbox{$\widetilde{C}$}% \message{//depth:\the\dp0//}% \box0% kapacitás.

Vezetek sema.jpg
1. ábra: A jelterjedésben vizsgált vezeték egy darabjának áramköri modellje.

Látható, hogy a fenti értékek közül \setbox0\hbox{$\widetilde{R}$}% \message{//depth:\the\dp0//}% \box0% értéke elsősorban a vezető anyagi minőségétől függ (értéke nagyfrekvencián a skin-effektus miatt megnő), azonban \setbox0\hbox{$\widetilde{L}$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$\widetilde{C}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\widetilde{G}$}% \message{//depth:\the\dp0//}% \box0% értéke nagyban függ attól, hogy a két drót egymáshoz képest hogyan helyezkedik el (pl. sodort érpárra \setbox0\hbox{$\widetilde{L}=0$}% \message{//depth:\the\dp0//}% \box0%, de \setbox0\hbox{$\widetilde{C}$}% \message{//depth:\the\dp0//}% \box0% értéke nagy). Egymástól adott távolságra elhelyezkedő drótpár esetére \setbox0\hbox{$\widetilde{L}$}% \message{//depth:\the\dp0//}% \box0% értéke fix, viszont \setbox0\hbox{$\widetilde{C}$}% \message{//depth:\the\dp0//}% \box0% nagyban függ a környező dielektrikumtól (utóbbi probléma a sós víz miatt a transzatlanti kábelnél merült fel). Mindezen problémákra kínál megoldást a koaxiális kábel (Heaviside, 1880), amiben a földelt külső vezetéken belül helyezkedik el a másik drót. Ennek előnye, hogy minden paramétere jól definiált, mind az elektromos, mind a mágneses erővonalak belül a két koaxiális vezeték között helyezkednek el, amint azt a 2. ábra mutatja. A korábbi merev falú, levegővel kitöltött koaxiális kábeleket mára a rugalmas dielektrikummal kitöltött kábelek váltották fel (tipikusan \setbox0\hbox{$\varepsilon_{\text{r}}=2-3$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\mu_{\text{r}}=1.0$}% \message{//depth:\the\dp0//}% \box0%).

Koax abra.jpg
2. ábra: A koaxiális vezeték keresztmetszete az elektromos és mágneses tér \setbox0\hbox{$\underline{\textit{\textbf{E}}}$}% \message{//depth:\the\dp0//}% \box0%, ill. \setbox0\hbox{$\underline{\textit{\textbf{B}}}$}% \message{//depth:\the\dp0//}% \box0% vonalaival a kábel alapvető, ún. TEM00 módusára. A belső vezetéken változó feszültség van, míg a külső leggyakrabban le van földelve.

A koaxiális kábelek hosszegységre eső kapacitására és önindukciós együtthatójára e két paraméter definiciójából adódik:

\[ \widetilde{C}=\frac{2 \pi \varepsilon_0 \varepsilon_{\text{r}}}{\ln(D/d)}, \qquad \widetilde{L}=\frac{\mu_0 \mu_{\text{r}}\ln(D/d)}{2\pi}, \]

\noindent ahol \setbox0\hbox{$D$}% \message{//depth:\the\dp0//}% \box0% az árnyékolás belső átmérője és \setbox0\hbox{$d$}% \message{//depth:\the\dp0//}% \box0% a kábel belső vezetőjének külső átmérője, \setbox0\hbox{$\varepsilon_0$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\mu_0$}% \message{//depth:\the\dp0//}% \box0% az ismert fizika állandók, \setbox0\hbox{$\varepsilon_{\text{r}}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\mu_{\text{r}}$}% \message{//depth:\the\dp0//}% \box0% az anyagra jellemző paraméterek.

A távíróegyenletek bemutatásához a legegyszerűbb eset tárgyalásához feltesszük, hogy mindkét drót tökéletes vezető (\setbox0\hbox{$\widetilde{R}=0$}% \message{//depth:\the\dp0//}% \box0%) és tökéletesen szigetelt egymástól (\setbox0\hbox{$\widetilde{G}=0$}% \message{//depth:\the\dp0//}% \box0%), tehát a jelenség csak \setbox0\hbox{$\widetilde{L}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\widetilde{C}$}% \message{//depth:\the\dp0//}% \box0%-től fog függeni. (A teljesen általános eset is megoldható, csak bonyolultabb eredményekre vezet.) Ekkor mind a feszültség (\setbox0\hbox{$U(x,t)$}% \message{//depth:\the\dp0//}% \box0%), mind az áram (\setbox0\hbox{$I(x,t)$}% \message{//depth:\the\dp0//}% \box0%) hely- és időfüggő lesz, és leírásukra a következő két csatolt, lineáris, elsőrendű parciális-differenciálegyenlet adódik (Heaviside, 1880):

\[ \begin{aligned} \frac{\partial U(x,t)}{\partial x}=-\widetilde{L} \frac{\partial I(x,t)}{\partial t}\\ \frac{\partial I(x,t)}{\partial x}=-\widetilde{C} \frac{\partial U(x,t)}{\partial t}. \end{aligned} \]

Ezek a távíróegyenletek a Maxwell-egyenletekből véges differenciák segítségével elemi úton levezethetők. További összevonással két ekvivalens hullámegyenletet kapunk mind az áramra, mind a feszültségre:

\[ \begin{aligned} \frac{\partial^2 U(x,t)}{\partial t^2}=\frac{1}{\widetilde{L}\widetilde{C}}\frac{\partial^2 U(x,t)}{\partial x^2}\\ \frac{\partial^2 I(x,t)}{\partial t^2}=\frac{1}{\widetilde{L}\widetilde{C}}\frac{\partial^2 I(x,t)}{\partial x^2}. \end{aligned} \]

Az ismert alakú hullámegyenletekből leolvasható, hogy a kábelben terjedő zavar sebessége \setbox0\hbox{$v=\frac{1}{\sqrt{\widetilde{L}\widetilde{C}}}$}% \message{//depth:\the\dp0//}% \box0%, és a legáltalánosabb megoldás a feszültségre és áramra:

\[ \begin{aligned} U(x,t)=U^+ f(\omega t- k x)+U^-f(\omega t+ k x)\\ I(x,t)=I^+ f(\omega t- k x)+I^-f(\omega t+ k x), \end{aligned} \]

ahol \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% a terjedő hullám körfrekvenciája, \setbox0\hbox{$k=\omega/v$}% \message{//depth:\the\dp0//}% \box0% pedig a hullámszáma. \setbox0\hbox{$U^+$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$U^-$}% \message{//depth:\the\dp0//}% \box0% a pozitív, illetve negatív \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% irányba terjedő jel amplitúdója, \setbox0\hbox{$f$}% \message{//depth:\the\dp0//}% \box0% egy tetszőleges függvény. Vegyük észre, hogy a \setbox0\hbox{$v$}% \message{//depth:\the\dp0//}% \box0% mennyiség dimenziója valóban m/s.

Egy speciális eset az, amikor a kábelen csak egy irányba haladó hullám van jelen. Ez a megoldás:

\[ \begin{aligned} U(x,t)=U_0 e^{i(\omega t- k x)}\\ I(x,t)=I_0 e^{i(\omega t- k x)}. \end{aligned} \]

Ezt a speciális megoldást a távíróegyenletekbe visszaírva azt kapjuk, hogy a feszültség és áram aránya a haladó hullámra:

\[ \frac{U(x,t)}{I(x,t)}=\sqrt{\frac{\widetilde{L}}{\widetilde{C}}}=Z_0, \]

ahol a \setbox0\hbox{$Z_0$}% \message{//depth:\the\dp0//}% \box0% ellenállás dimenziójú mennyiséget a kábel hullámimpendaciájának nevezzük.

Visszaverődések a kábel végéről



A hullámegyenlet konkrét megoldását a kezdeti és peremfeltételek (pl. a drót végén előírt amplitúdó) ismeretében kaphatjuk meg. Középiskolás hangtani jelenségekkel analóg a következő két eset: amikor a koax kábel végét rövidre zárjuk (\setbox0\hbox{$Z_{\text{l}}=0$}% \message{//depth:\the\dp0//}% \box0%), ill. amikor a koax kábel végén szakadás van (\setbox0\hbox{$Z_{\text{l}}=\infty$}% \message{//depth:\the\dp0//}% \box0%). E két esetet szemlélteti a 3. ábra. Amennyiben a vezeték hossza és a gerjesztő hullám frekvenciája között jól meghatározható összefüggések állnak fenn (\setbox0\hbox{$d=n  \cdot \lambda/2$}% \message{//depth:\the\dp0//}% \box0% a zárt végre és \setbox0\hbox{$d=(2n+1)  \cdot \lambda/4$}% \message{//depth:\the\dp0//}% \box0% nyitott végre, \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% egész), a vezeték mentén feszültség állóhullámok alakulnak ki. A csomó- és duzzadóhelyeket a jól ismert bezárt illetve nyitott végű síppal való analógia alapján kaphatjuk meg. E két esetet a hanghullámokra vonatkozó analógia alapján úgy érthetjük meg, hogy mind a lezárt, mind a nyitott végről visszaverődik a hullám, és a kábelmenti feszültségben látható állóhullám kép az odafelé haladó és visszavert hullámok interferenciájának eredménye. A DC áramköröknél szerzett ismeretek azt mondanák, hogy a feszültség a rövidrezárt drótpárban végig 0, míg a szakadásos végű drótpárra végig a meghajtó generátor feszültségét veszi fel.

Aramkor lezarassal new.jpg
3. ábra: Sematikus áramkör szinuszos meghajtó generátorral aminek \setbox0\hbox{$Z_{\textrm{f}}$}% \message{//depth:\the\dp0//}% \box0% kimenő ellenállása van, koaxiális vezeték aminek a végén \setbox0\hbox{$Z_{\textrm{l}}$}% \message{//depth:\the\dp0//}% \box0% lezáró impedancia van. A generátorból jön ki a teljes teljesítmény ha \setbox0\hbox{$Z_{\textrm{f}}=Z_0$}% \message{//depth:\the\dp0//}% \box0%. A lezárás három értékére vonatkozó vezetékbeli feszültség eloszlást is mutatjuk 20 pillanatfelvételre, amikor \setbox0\hbox{$d=5 \lambda$}% \message{//depth:\the\dp0//}% \box0%. Vegyük észre, hogy \setbox0\hbox{$Z_{\textrm{f}}=Z_0$}% \message{//depth:\the\dp0//}% \box0% esetén a vezetékben homogén a feszültség maximuma, \setbox0\hbox{$Z_{\textrm{f}}=0$}% \message{//depth:\the\dp0//}% \box0% esetén mindkét végén csomópont van (ekkor forráson is 0 feszültséget mérünk), és \setbox0\hbox{$Z_{\textrm{f}}=\inf$}% \message{//depth:\the\dp0//}% \box0% esetén mindkét végén duzzadóhely van.

A nagyfrekvenciás adat- vagy energiaátvitel nyilvánvalóan azt követeli meg, hogy a kábel végéről ne legyen visszaverődés. Az A. függelékben megmutatjuk, hogy ez akkor lép fel, amennyiben a lezáró impedanciára fennáll:

\[ Z_{\text{l}}=Z_0\,, \]

ahol \setbox0\hbox{$Z_0=\sqrt{\widetilde{L}/\widetilde{C}}$}% \message{//depth:\the\dp0//}% \box0% a vezeték hullámimpedanciája. Amennyiben ez a feltétel nem teljesül, akkor a visszavert és a kábel végére érkező hullámok amplitúdójának arányára fennáll:

\[ \Gamma=\frac{Z_{\text{l}}-Z_0}{Z_{\text{l}}+Z_0}, \]

ahol \setbox0\hbox{$\Gamma$}% \message{//depth:\the\dp0//}% \box0% az ún. reflexiós tényező; \setbox0\hbox{$Z_{\text{l}}$}% \message{//depth:\the\dp0//}% \box0% komplex értéke mellett \setbox0\hbox{$\Gamma$}% \message{//depth:\the\dp0//}% \box0% is komplex, ami azt fejezi ki, hogy a visszavert hullám fázisa nem többszöröse \setbox0\hbox{$\pi$}% \message{//depth:\the\dp0//}% \box0%-nek. Vegyük észre, hogy a két fentebb tárgyalt határesetben, \setbox0\hbox{$Z_{\text{l}}=0$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$Z_{\text{l}}=\infty$}% \message{//depth:\the\dp0//}% \box0%, amikor is maximális a reflexió \setbox0\hbox{$\pi$}% \message{//depth:\the\dp0//}% \box0% ill. 0 fokos fázistolással visszavert hullámmal.

A leggyakrabban használt koaxiális kábelek hullámimpedanciája \setbox0\hbox{$50~\Omega$}% \message{//depth:\the\dp0//}% \box0%. Ez az érték megállapodásból született, és a 60-as évektől kezdve elterjedt ipari sztenderd lett. Néhány helyen találkozhatunk még \setbox0\hbox{$75~\Omega$}% \message{//depth:\the\dp0//}% \box0%-os koaxiális kábelekkel is. Érdekességképp ezen értékek és az \setbox0\hbox{$50~\Omega$}% \message{//depth:\the\dp0//}% \box0% történeti hátteréről olvashatunk a B. függelékben.

A DC és alacsony frekvenciájú (néhány kHz-es AC) eszközöknél megszokhattuk, hogy egy ideális feszültség forrás belső ellenállása \setbox0\hbox{$0~\Omega$}% \message{//depth:\the\dp0//}% \box0%, míg ideális feszültségmérő bemenő ellenállása végtelen. A nagyfrekvenciás hálózatoknál minden mérőeszköz bemenő és kimenő ellenállása \setbox0\hbox{$50~\Omega$}% \message{//depth:\the\dp0//}% \box0%, mivel ekkora hullámimpdanciájú kábeleket csatlakoztatunk hozzájuk. Amennyiben egy adott hullámimpedanciájú vezetéket az ennek megfelelő ellenállással zárunk le, úgy nem alakulnak ki állóhullámok (hiszen nincs reflexió a végről), és a teljes vezeték hosszában azonos feszültséget mérhetünk.


A lezáró impedancia

Visszaverődések vizsgálata

A Smith chart

Mérési feladatok

A mérést két alkalomra bontva fogjuk elvégezni.

Kábelvégi reflexió vizsgálata (első mérési alkalom)

Oszcilloszkóppal


Itt oszcilloszkóppal mérjük meg a kábelvégi reflexió hatását a forrás kimenetére.

  1. Vegyük fel oszcilloszkóp segítségével a nagyfrekvenciás jelgenerátor kimenetének feszültségét a lezáró impedancia három esetére (0, 50 \setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0% és szakadás) a frekvencia (0.001 MHz-15 MHz) függvényében a mérőprogrammal. (Segítség: BNC T a forrás kimenetén, egyik vége oszcilloszkópon minél rövidebb dróttal 50 Ohmmal lezárva, másik végén egy ismert hosszúságú BNC kábel, mérőeszköz leírás \aref{muszer_fuggelek}. függelékben. A forrás 2-es kimenetére triggereljük az oszcilloszkópot. A mérőprogramban a rflabor <startfreq> <stopfreq> <numberofpoints> paranccsal tudjuk a frekvencia változtatása mellett felvenni az oszcilloszkóp 1-es csatornáján mért jel nagyságát és az 1-es és 2-es csatornán mért jel egymáshoz viszonyított fázisát. A save paranccsal tudjuk elmenteni a mérésünk eredményét. A readscope paranccsal fel tudjuk venni az oszcilloszkópon éppen látható jelet.)


Duplexerrel

Pulzus kábelvégi reflexiójának vizsgálata

A lezáró impedancia vizsgálata (első alkalom)

Szórt kapacitás mérése koaxiális kábelen (második alkalom)

Fénysebesség mérése szabad térben (második alkalom)