RLC körök mérése

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Szaller (vitalap | szerkesztései) 2012. február 10., 17:24-kor történt szerkesztése után volt.

Szerkesztés alatt!


Tartalomjegyzék


A mérés célja:

-megismerkedni a leggyakrabban használt frekvenciafüggő áramköri elemekkel és az ezekből felépülő szelektív áramkörökkel.

Ennek érdekében:

-áttekintjük a váltakozó áramú hálózatok reaktáns elemeinek tulajdonságait és néhány egyszerű szűrő és egy rezgőkör frekvenciafüggő viselkedését; -méréseket végzünk a fent említett hálózatokon.

Elméleti összefoglaló

Tekercs

A tekercsben indukálódó feszültséget az

\[ u(t) = L \frac{\textrm{d} i(t)}{\textrm{d} t} \]
(1)

egyenlet írja le. Szinuszos gerjesztés [ \setbox0\hbox{$ i(t)=I_0 \textrm{sin}\omega t $}% \message{//depth:\the\dp0//}% \box0% ] esetén

\[ u(t) = L \omega I_0 \textrm{cos}\omega t,  \]
(2)

ami a következő alakba is írható:

\[ u(t) = L \omega I_0 \textrm{sin}( \omega t + 90^\circ ),  \]
(3)

tehát a tekercsben fellépő feszültség 90°-ot siet az átfolyó áramhoz képest. A jelenség magyarázata a Lenz-törvényen alapul.

Kondenzátor

A kondenzátoron átfolyó áram időfüggését az alábbi egyenlet írja le:

\[ i(t) = C \frac{\textrm{d} u(t)}{\textrm{d} t}.  \]
(4)

Szinuszos gerjesztés [ \setbox0\hbox{$ u(t)=U_0 \textrm{sin}\omega t $}% \message{//depth:\the\dp0//}% \box0% ] esetén:

\[ i(t) = C \omega U_0 \textrm{cos}\omega t,  \]
(5)

ami a fentiekhez hasonlóan a következő alakba írható:

\[ i(t) = C \omega U_0 \textrm{sin}( \omega t + 90^\circ ),  \]
(6)

azaz a kondenzátor árama 90°-ot siet a feszültségéhez képest. Magyarázata az, hogy először áram folyik, így töltések kerülnek a lemezekre, és ezek hozzák létre a feszültséget. Gyakran szükséges a kondenzátor feszültségének ismerete, ami (4) alapján az alábbiak szerint számítható:

\[ u(t) = \frac{1}{C} \int i(t)\textrm{d}t .  \]
(7)

Aluláteresztő szűrő

Írjuk fel az 1.a és 1.b ábrákon látható kapcsolások kimenő feszültségeit! (A vastag betűs mennyiségek komplex változók, \setbox0\hbox{$j$}% \message{//depth:\the\dp0//}% \box0% a képzetes egység.)

LowpassA.jpg
LowpassB.jpg
\[ \begin{array}{rcl} \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{1/j\omega C}{R + 1/j\omega C} \\ \\ \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{1}{1 + j\omega RC} \end{array}  \]
\[  \begin{array}{rcl}  \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{R}{R + j\omega L} \\ \\ \mathbf{U}_{ki}  & = &  \mathbf{U}_{be} \frac{1}{1 + j\omega L/R}  \end{array}  \]

A kimeneti és bemeneti feszültségek hányadosa a hálózatra jellemző, frekvenciafüggő kifejezés.

\[ \frac{\mathbf{U}_{ki}}{\mathbf{U}_{be}}   =  \frac{1}{1 + j\omega RC}  \]
\[ \frac{\mathbf{U}_{ki}}{\mathbf{U}_{be}}   =  \frac{1}{1 + j\omega L/R}   \]
(8)

A két (8) kifejezés formailag azonos, tehát a két kapcsolás azonos jellegű viselkedést mutat. Ameddig \setbox0\hbox{$\omega RC \ll 1$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$\omega L/R \ll 1$}% \message{//depth:\the\dp0//}% \box0%, a kifejezések értéke 1, ha \setbox0\hbox{$\omega RC \gg 1$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$\omega L/R \gg 1$}% \message{//depth:\the\dp0//}% \box0%, a hányados értéke \setbox0\hbox{$1/\omega$}% \message{//depth:\the\dp0//}% \box0% szerint csökken. Ez azt jelenti, hogy adott \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0% esetén az alacsony frekvenciájú jelek csillapítás nélkül jelennek meg a kimeneten, míg magasabb frekvenciákon a kimenő feszültség egyre kisebb. Ezeket a kapcsolásokat aluláteresztő szűrőknek nevezik.

Felüláteresztő szűrő

A 2.a és a 2.b ábrákon látható kapcsolásokat leíró egyenletek az előző pontban követett eljárás alapján az alábbiak szerint alakulnak.

HighpassA.jpg
HighpassB.jpg
\[ \begin{array}{rcl} \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{R}{R + 1/j\omega C} \\ \\ \frac{\mathbf{U}_{ki}}{\mathbf{U}_{be}}  & = & \frac{1}{1 + 1/j\omega RC} \end{array}  \]
\[  \begin{array}{rcl}  \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{j\omega L}{R + j\omega L} \\ \\ \frac{\mathbf{U}_{ki}}{\mathbf{U}_{be}}  & = & \frac{1}{1 + R/j\omega L}  \end{array}  \]
(9)

A kifejezésekből jól látszik, hogy a kapcsolások a kisfrekvenciás jeleket nem engedik a kimenetre, míg a nagyfrekvenciás jelek csillapítás nélkül jelennek meg a kimeneti pontokon.

Sávzáró szűrő

Alul és felüláteresztő szűrők egymás után kapcsolásával és az áteresztési tartományok helyes megválasztásával előállítható olyan szűrő, amelyik csak egy meghatározott tartományban csillapítja a jelet. Az ilyen kapcsolást nevezik sávzáró szűrőnek. Ennek egy realizálása a kettős T szűrő, a 3. ábrán látható.