Félvezető termoelem és Peltier-elem vizsgálata (régi)

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Vanko (vitalap | szerkesztései) 2012. szeptember 1., 15:17-kor történt szerkesztése után volt.


A mérés célja:

  • elmélyíteni a hallgatók termoelektromos effektusokkal kapcsolatos ismereteit,
  • megismertetni a hallgatókat a félvezető termoelemmel és a Peltier-elemmel (termoelektromos hűtő elemmel).

Ennek érdekében:

  • összefoglaljuk a félvezető termoelemmel és a Peltier-elemmel kapcsolatos elméleti tudnivalókat,
  • mérések segítségével meghatározzuk a félvezető termoelem és a Peltier-elem fontosabb jellemzőit.


Tartalomjegyzék


Elméleti összefoglaló

A Hőmérsékletérzékelők hitelesítése című mérés elméleti részében részletesebben foglalkoztunk a két vezetőből készült termoelemek működésével és alkalmazásával. Most az ott elmondottakra is támaszkodunk.

Termoelektromos jelenségek

A félvezető termoelem és a Peltier-elem működését termoelektromos és hőtani folyamatok határozzák meg. A termoelektromos jelenségek elektromos és hőtani folyamatok közötti kapcsolatokat adnak meg. Összefoglalónkat ezen effektusok (a Seebeck-, a Peltier-, a Thomson-effektus) és a Joule-hő ismertetésével kezdjük, majd a tisztán hőtani folyamatok leírásával folytatjuk, míg végül megvizsgáljuk ezek együttes hatását a termoelem és a Peltier-elem viselkedésére.

A termoelektromos jelenségek fémek esetében is fellépnek, de az effektusok sokkal erősebbek félvezetők alkalmazásakor: például egy félvezető termoelem hőfoktényezője egy nagyságrenddel nagyobb, mint egy fém termoelemé. Ezért a gyakorlatban használt Peltier-elemek (termoelektromos hűtőelemek) is félvezetőkből készülnek és a mérésen is ilyet használunk.

Egy n- és p-típusú félvezetőből kialakított termoelemet mutat az 1/b ábra. Ha az A és B pont \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékleten van és C pont hőmérséklete \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%, (\setbox0\hbox{$T\neq T_0$}% \message{//depth:\the\dp0//}% \box0%) az A és B pont között \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% feszültséget mérhetünk. Ez a Seebeck-effektus. Az effektusra jellemző az anyagtól és hőmérséklettől függő \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% állandót az
\[\alpha = \left( \frac{{\rm d}U}{{\rm d}T}\right)_{T_0}\]
egyenlettel definiáljuk.

Ha a fenti összeállításon áram folyik, az áram irányától függően a C pontban hő szabadul fel, vagy hő nyelődik el. Ez a Peltier-effektus.

Az egységnyi idő alatt felszabaduló vagy elnyelt hőnek megfelelő hőteljesítmény (\setbox0\hbox{$P_P$}% \message{//depth:\the\dp0//}% \box0%) arányos az \setbox0\hbox{$I$}% \message{//depth:\the\dp0//}% \box0% árammal:
\[P_P=\frac{{\rm d}Q}{{\rm d}t}=\pi I=\alpha TI\]
ahol \setbox0\hbox{$Q$}% \message{//depth:\the\dp0//}% \box0% a hő, \setbox0\hbox{$\pi$}% \message{//depth:\the\dp0//}% \box0% a Peltier-együttható, \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% az abszolút hőmérséklet, míg \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% a Seebeck-együttható. Amikor \setbox0\hbox{$I$}% \message{//depth:\the\dp0//}% \box0% áram folyik olyan homogén vezetőben, amelyben az áram irányába eső \setbox0\hbox{${\rm d}T/{\rm d}x$}% \message{//depth:\the\dp0//}% \box0% gradiens van, az áram és a hőmérséklet gradiens irányától, valamint a vezető anyagától függően hő szabadul fel, vagy nyelődik el. Ez a Thomson-effektus. Az időegység alatt a vezető egységnyi hosszúságú részében fejlődő Thomson-hő arányos az áramerősséggel és a hőmérséklet gradienssel:
\[P_T=\tau \frac{{\rm d}T}{{\rm d}x} I\]
ahol \setbox0\hbox{$\tau$}% \message{//depth:\the\dp0//}% \box0% a vezető anyagától és a hőmérséklettől függő előjeles mennyiség, a Thomson-állandó. A Thomson-hő pozitív előjelű – azaz hő szabadul fel – ha \setbox0\hbox{$\tau$}% \message{//depth:\the\dp0//}% \box0% pozitív előjelű és az áram a magasabb hőmérsékletű hely felől az alacsonyabb hőmérsékletű hely felé folyik. Az árammal átjárt vezetőben hő szabadul fel: az úgynevezett Joule-hő. A Joule-törvény értelmében a teljesítmény, ha \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% ellenállású vezetőn \setbox0\hbox{$I$}% \message{//depth:\the\dp0//}% \box0% áram folyik:
\[P_J=I^2 R\]
Az eszköz működésével kapcsolatos "tisztán" hőtani folyamatok közül egyedül az elem belsejében lejátszódó hővezetés hatását vesszük figyelembe. Ha a meleg oldal \setbox0\hbox{$T_1$}% \message{//depth:\the\dp0//}% \box0% és a hideg oldal \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékletű (\setbox0\hbox{$T_1 > T_0$}% \message{//depth:\the\dp0//}% \box0%), akkor a meleg oldalról a hideg oldal felé lejátszódó hővezetés teljesítménye:
\[P_v=\lambda \frac{A}{d}\left(T_1-T_0\right)\]
ahol \setbox0\hbox{$\lambda$}% \message{//depth:\the\dp0//}% \box0% a hővezető-képesség, \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% az elem keresztmetszetének területe és \setbox0\hbox{$d$}% \message{//depth:\the\dp0//}% \box0% a vastagság. A termoelemként és Peltier-elemként is használható eszköz vázlata a 1/d ábrán látható.
Termoelempeltier 1 abra.jpg
1. ábra


Félvezető termoelem

Ha két fémből (1 és 2) termoelemet hozunk létre (1/a ábra), az A és B pontok között mérhető feszültség a C pont \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% hőmérséklete és az A és B pont közös \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékletének különbségétől (\setbox0\hbox{$T-T_0$}% \message{//depth:\the\dp0//}% \box0%), valamint a két fém anyagi minőségétől függ. A kapott feszültség nem függ a két fém C pontban történ összeforrasztására használt harmadik fém anyagi minőségétől. A fém termoelemhez hasonlóan, két különböző módon szennyezett félvezetőből is létrehozhatunk termoelemet. Ezek érzékenysége kb. egy nagyságrenddel nagyobb, mint a fémből készült termoelemeké. A félvezető termoelem vázlata az 1/b ábrán, perspektivikus rajza pedig az 1/c ábrán látható.

A termoelem egyik jellemzője az 1.1 részben bevezetett Seebeck-együttható, ami az l°C hőmérséklet-különbség hatására kialakuló termofeszültséget adja meg.

Az első közelítésben a termoelem üresjárási feszültségének hőmérsékletfüggése az
\[U_0=\alpha_{12}\left(T-T_0\right)\]
összefüggéssel adható meg. A vizsgálat tárgyát képező félvezető termoelem \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% darab p-n átmenetet tartalmaz, amelyek elektromosan sorba kapcsolódnak (1/d ábra), így feszültségük összeadódik:
\[U=kU_0\]

Az átmenetek két alumínium lemezhez csatlakoznak, jó hővezető, de elektromosan szigetelő réteggel (1/d ábra). Az alumínium lemezek közül az egyik (a meleg oldal) \setbox0\hbox{$T_1$}% \message{//depth:\the\dp0//}% \box0% hőmérsékleten, míg a másik (a hideg oldal) \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékleten van. Ilyen módon az elemek hőtani szempontból párhuzamosan kapcsolódnak.

Vizsgálatainkhoz a termoelemet két hőcserélő közé helyezzük (3/a ábra). A hideg oldalhoz csatlakozó hőcserélőn (alumínium tömb) csapvizet vezetünk keresztül és ennek az oldalnak a hőmérsékletét állandó (\setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0%) értéken tartjuk. A meleg oldalhoz csatlakozó alumínium tömbben ellenállás fűtőtest van, amit alacsony feszültségű külső áramforrás segítségével működtetünk. Így a meleg oldal hőmérsékletét változtatni tudjuk.

Ha különböző \setbox0\hbox{$T_1$}% \message{//depth:\the\dp0//}% \box0% hőmérsékletek mellett megmérjük a termoelem \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% üresjárási feszültségét, az \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0%\setbox0\hbox{$\left(T_1-T_0\right)$}% \message{//depth:\the\dp0//}% \box0% összefüggést ábrázolva egyenest kapunk. Az egyenes meredeksége a Seebeck-együttható.

A termoelem fontos jellemzője a belső ellenállása. A belső ellenállást a Hőmérsékletérzékelők hitelesítése című jegyzetben leírtak (6. feladat) szerint mérhető.

Termoelemünk termikus energia hatására termel villamos energiát. Mekkora hatásfokkal teszi ezt? Erre a kérdésre a következő módon kaphatunk feleletet:

A termoelemet belső ellenállásával azonos nagyságú ellenállással terheljük. Ekkor tudjuk kivenni a maximális elektromos teljesítményt. Ehhez a melegoldali alumínium tömböt kb. 20 W villamos teljesítménnyel felfűtjük, majd a fűtést kikapcsolva mérjük az időben csökkenő hőmérsékletet és a terhelő ellenálláson jelentkező villamos teljesítményt. Ha feltételezzük, hogy rendszerünk a környezettől jól szigetelt, akkor azt mondhatjuk, hogy a fűtött alumínium tömb által leadott hő hatására nyerünk elektromos teljesítményt. A leadott hőteljesítmény:
\[P_h=\frac{{\rm d}Q}{{\rm d}t}=cm\frac{{\rm d}T}{{\rm d}t}\]
ahol \setbox0\hbox{$c$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% az alumínium fajhője ill. a tömb tömege. A fentiek alapján termoelem hatásfoka úgy állapítható meg, hogy a \setbox0\hbox{$T(t)$}% \message{//depth:\the\dp0//}% \box0% hűlési görbe vizsgált pontján meghatározzuk \setbox0\hbox{${\rm d}T/{\rm d}t$}% \message{//depth:\the\dp0//}% \box0% értékét és az előzőképlet alapján számítjuk a hőteljesítményt (\setbox0\hbox{$P_h$}% \message{//depth:\the\dp0//}% \box0%-t), miközben mérjük az ugyanezen időponthoz tartozó villamos teljesítményt:
\[P_v=\frac{U^2}{R}\]
Az átalakítás hatásfoka ezek után:
\[\eta=\frac{P_h}{P_v}\]

A fentiekből a hatásfok hőmérséklet-különbség függése [az \setbox0\hbox{$\eta(\Delta T)$}% \message{//depth:\the\dp0//}% \box0% kapcsolat] is meghatározható.

Peltier-elem

Az 1.1 részben áttekintett effektusok eredményeként röviden összefoglalva a vizsgált Peltier-elem belsejében a következő folyamatok játszódnak le:

  • Az áram irányától függően a Peltier-effektus miatt az egyik oldalon az átmenetnél hő nyelődik el (hideg oldal, \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékleten), másik oldalon hő szabadul fel (meleg oldal, \setbox0\hbox{$T_1$}% \message{//depth:\the\dp0//}% \box0% hőmérsékleten).
  • A Thomson-effektus következtében a félvezető elemek anyagától függően az elem belsejében hő szabadul fel vagy nyelődik el.
  • A Joule-hő következtében az elem belsejében hő fejlődik. Ezt egyszerűség kedvéért úgy tekintjük, hogy egyenlő arányban jut a két felületre.
  • A hővezetés eredménye egy a meleg oldalról a hideg oldal felé történő hőáramlás.
Az elmondottak alapján a Peltier-elem hideg oldalán a hűtőteljesítmény:
\[P_H=\alpha T_0 I - \tau \frac{T_1-T_0}{2} I - \frac{I^2 R}{2} - \lambda \frac{A}{d}\left(T_1-T_0\right)\]
A meleg oldal fűtő teljesítménye:
\[P_H=\alpha T_1 I + \tau \frac{T_1-T_0}{2} I + \frac{I^2 R}{2} - \lambda \frac{A}{d}\left(T_1-T_0\right)\]
Az elektromos teljesítmény:
\[P_E=\alpha \left(T_1-T_0\right) I + \tau \left(T_1-T_0\right) I + I^2 R=U_p I_p\]

A Peltier-elem energetikai folyamatait a 2. ábra szemlélteti. A hőerőgépek és a hűtőgépek működése az ideális Carnot-körfolyamat segítségével közelíthető. Hőerőgépként a Carnot-gép \setbox0\hbox{$W$}% \message{//depth:\the\dp0//}% \box0% munkát végez, miközben a rendszer a magasabb \setbox0\hbox{$T_1$}% \message{//depth:\the\dp0//}% \box0% hőmérsékletű hőtartályból \setbox0\hbox{$Q_1$}% \message{//depth:\the\dp0//}% \box0% hőmennyiséget vesz fel, míg a kisebb \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékletű hőtartálynak \setbox0\hbox{$Q_0$}% \message{//depth:\the\dp0//}% \box0% hőt ad le. Az így nyert munka \setbox0\hbox{$W=Q_1-Q_0$}% \message{//depth:\the\dp0//}% \box0%. A gép hatásfoka illetve maximális hatásfoka pedig rendre \setbox0\hbox{$\eta=W/Q_1$}% \message{//depth:\the\dp0//}% \box0% ill. \setbox0\hbox{$\eta_{max}=\left(T_1-T_0\right)/T_1$}% \message{//depth:\the\dp0//}% \box0%. (Így működik a termoelem.) Hűtőgépként (hőszivattyúként) a Peltier-elem fordított Carnot-gépnek tekinthető. Külső \setbox0\hbox{$W$}% \message{//depth:\the\dp0//}% \box0% munka befektetése árán a hidegebb \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% oldalról \setbox0\hbox{$Q_0$}% \message{//depth:\the\dp0//}% \box0% hőt von ki, míg a melegebb oldalon \setbox0\hbox{$Q_1=W+Q_0$}% \message{//depth:\the\dp0//}% \box0% hőt ad le. A folyamat teljesítménytényezője \setbox0\hbox{$\varepsilon=Q_0/W$}% \message{//depth:\the\dp0//}% \box0% ill. \setbox0\hbox{$\varepsilon_{max}=T_0/\left(T_1-T_0\right)$}% \message{//depth:\the\dp0//}% \box0%. Vegyük észre, hogy \setbox0\hbox{$\varepsilon > 1$}% \message{//depth:\the\dp0//}% \box0% is lehet. A hatásfok ill. teljesítménytényező a megfelelő teljesítmények segítségével is kifejezhető.

Termoelempeltier 2 abra.jpg
2. ábra
A Peltier-elem vizsgálatához használt eszköz a félvezető elemből és a két oldalára szerelt fémtömbökből áll (3/b ábra). Az egyik tömb vízzel hűthető (így \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérséklete közel állandó), míg a másik oldal hőszigetelt és fűthető. Ennek megfelelően, a változó hőmérsékletű oldal hőháztartását az alábbi egyenlet írja le:
\[cm\frac{{\rm d}T}{{\rm d}t}=-P_h+P_f-\lambda\frac{A}{d}\left(T-T_0\right)\]
ahol \setbox0\hbox{$c$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% a tömb tömege ill. fajhője, \setbox0\hbox{$P_h$}% \message{//depth:\the\dp0//}% \box0% a hőszivattyúként működtetett Peltier-elem által kivont hőteljesítmény, \setbox0\hbox{$P_f$}% \message{//depth:\the\dp0//}% \box0% a fűtőteljesítmény, míg a harmadik tag a Peltier-elemen keresztül hővezetéssel átjutó ismeretlen hőteljesítmény. Termikus egyensúlyban a baloldal 0, vagyis a jobboldali tagok kiejtik egymást.

Legyen kezdetben \setbox0\hbox{$T=T_0$}% \message{//depth:\the\dp0//}% \box0%. Ha a Peltier-elemet a fűtés bekapcsolása nélkül \setbox0\hbox{$P_p=U_p I_p$}% \message{//depth:\the\dp0//}% \box0% elektromos teljesítmény befektetése mellett működtetjük, \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% olyan értékre áll be, melynél \setbox0\hbox{$P_h=\lambda (A/d)\left(T_0-T\right)$}% \message{//depth:\the\dp0//}% \box0%. \setbox0\hbox{$P_p$}% \message{//depth:\the\dp0//}% \box0% növelésével \setbox0\hbox{$P_h$}% \message{//depth:\the\dp0//}% \box0%, és ezzel a hőmérséklet-különbség is nő. Mivel azonban \setbox0\hbox{$\lambda (A/d)$}% \message{//depth:\the\dp0//}% \box0% ismeretlen, a teljesítménytényező így nem határozható meg.

Az \setbox0\hbox{$\varepsilon$}% \message{//depth:\the\dp0//}% \box0% teljesítménytényező meghatározásához állandó teljesítménnyel működtetjük a Peltier-elemet, miközben változó \setbox0\hbox{$P_f$}% \message{//depth:\the\dp0//}% \box0% fűtőteljesítmény mellett vizsgáljuk a kialakuló \setbox0\hbox{$T_0-T$}% \message{//depth:\the\dp0//}% \box0% egyensúlyi hőmérséklet-különbségeket. Alkalmasan választott fűtőteljesítmény esetén a két oldal közti hőmérséklet-különbség eltűnik. Ekkor a \setbox0\hbox{$P_f=U_f I_f$}% \message{//depth:\the\dp0//}% \box0% fűtőteljesítmény éppen megegyezik a Peltier-elem által a vízhűtött oldalra átszivattyúzott \setbox0\hbox{$P_h$}% \message{//depth:\the\dp0//}% \box0% hőteljesítménnyel (\setbox0\hbox{$P_h=P_f$}% \message{//depth:\the\dp0//}% \box0%), vagyis a teljesítménytényező az \setbox0\hbox{$\varepsilon=P_f/P_p$}% \message{//depth:\the\dp0//}% \box0% összefüggés alapján számítható.

Akkor, amikor a hőmérséklet-különbség eltűnik, meghatározható a Peltier-elem belső ellenállása és a Peltier-együttható értéke is.

\setbox0\hbox{$\Delta T=0$}% \message{//depth:\the\dp0//}% \box0% estében nem keletkezik termofeszültség, így a Peltier-elem belső ellenállása az
\[R=\frac{U_p}{I_p}\]
képlettel meghatározható. \setbox0\hbox{$\Delta T=0$}% \message{//depth:\the\dp0//}% \box0% estében nincsen hővezetés (és Thomson-hő) se, így a Peltier-együttható a definiáló képlet alapján könnyen kifejezhető:
\[\pi=\frac{P_p}{I}=\frac{P_f+\frac{1}{2}P_p}{I_p}=\frac{P_f}{I_p}+\frac{U_p}{2}\]
(A Peltier-elemnek a fűtőellenállás által leadott teljesítményt és a Peltier-elemre kapcsolt, Joule-hőként felszabaduló elektromos teljesítmény felét kell átszivattyúznia.)


Mérési elrendezés

A termoelem és a Peltier-elem vizsgálatához – kicsit különböző elrendezésben – ugyanazt az eszközt használjuk (3/a és 3/b ábra). A mérőeszköz két 50 g-os alumínium tömbből ill. közöttük elhelyezkedő 98 db sorba kötött p-n átmenetből áll. Az eszköznek a külső környezettel történő hőcseréjét többrétegű szigetelés akadályozza. Az egyik tömb hőmérsékletét vízhűtés rögzíti, míg a másik oldal egy tápegységgel (max. 25 V, 5 A) fűthető. A fűtőteljesítményt áram- és feszültségmérés alapján, az alumínium tömbök hőmérsékletét a Pt-hőmérők ellenállásából a
\[t(^{\circ} C)=\frac{1}{0,0039}\left(\frac{R(\Omega)}{100}-1\right)\]
összefüggés alapján számítjuk.

A termoelem kimenetén mérhető a termofeszültség és a terhelő áram (3/a. ábra).

A Peltier-elem működtetéséhez egy másik tápegységet (max. 40 V, 10 A) használunk (3/b ábra). A Peltier-teljesítményt áram- és feszültségmérés alapján számítjuk.

Termoelempeltier 3a abra.jpg
Termoelempeltier 3b abra.jpg
3/a ábra 3/b ábra


Mérési feladatok

  • A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.

1. Határozza meg a félvezető termoelem elektromotoros erejét és belső ellenállását a hőmérséklet függvényében! Ábrázolja az elektromotoros erő – hőmérséklet-különbség összefüggést és határozza meg a Seebeck-állandót. A fűtőellenállásra kezdetben kb. 2 V, majd egyre nagyobb (max. 20 V) feszültséget kapcsolva folyamatosan fűtse a meleg oldalt, és néhány percenként olvassa le a hőmérséklet (ellenállás), üresjárati feszültség és terhelő áram értékeket.

Az ellenállás alapján számított hőmérséklet:
\[t(^{\circ} C)=\frac{1}{0,0039}\left(\frac{R(\Omega)}{100}-1\right)\]

2. Határozza meg a termoelem hatásfokát a hőmérséklet függvényében! Az első feladat utolsó fűtőteljesítményének beállított értékén folytassa a fűtést a véghőmérséklet eléréséig. Ekkor a termoelem kivezetésére először ne kapcsoljon semmit, kapcsolja ki a fűtőtest tápegységét, és egyidejűleg indítsa meg a stoppert! A meleg oldal alumínium tömbje a tökéletlen hőszigetelés miatt hűlni fog. 50 °C és 40 °C között \setbox0\hbox{$\Delta t=$}% \message{//depth:\the\dp0//}% \box0% 30 s időközönként olvassa le az alumínium tömb hőmérsékletét, illetve a termoelem feszültségét!

A \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% időtartamok félidejénél a hőteljesítmény:
\[P_{h0}=\frac{cm\left(T_A-T_B\right)}{\Delta t}\]

Ezután kapcsolja be a fűtőtest ellenállását és folytassa a fűtést addig, amíg újra eléri a véghőmérsékletet. Ekkor kapcsoljon a termoelemre egy, a belső ellenállással egyező értékre beállított ellenállásdekádot! Kapcsolja ki a fűtőtest tápegységét, és egyidejűleg indítsa meg a stoppert! 50 °C és 40 °C között \setbox0\hbox{$\Delta t=$}% \message{//depth:\the\dp0//}% \box0% 30 s időközönként olvassa le az alumínium tömb hőmérsékletét, illetve a termoelem feszültségét!

A \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% időtartamok félidejénél a villamos teljesítmény:
\[P_v\cong \frac{U_A^2+U_B^2}{2R}\]
a hőteljesítmény:
\[P_{ht}=\frac{cm\left(T_A-T_B\right)}{\Delta t}\]
a hatásfok pedig:
\[\eta=\frac{P_v}{P_{ht}-P_{h0}}\]
ahol az \setbox0\hbox{$U_A$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$U_B$}% \message{//depth:\the\dp0//}% \box0% feszültségek, és a \setbox0\hbox{$T_A$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$T_B$}% \message{//depth:\the\dp0//}% \box0% hőmérsékletek a \setbox0\hbox{$\Delta t=$}% \message{//depth:\the\dp0//}% \box0% 30 s időintervallum elején ill. végén felvett értékeket jelölik, \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% a terhelő ellenállás, \setbox0\hbox{$c =$}% \message{//depth:\the\dp0//}% \box0% 900 J/kgK, \setbox0\hbox{$m =$}% \message{//depth:\the\dp0//}% \box0% 0,05 kg az alumínium fajhője ill. a tömb tömege.

3. Mérje meg 5 W Peltier-teljesítmény esetén (a fűtőtest kiiktatásával) a kialakuló hőmérséklet-különbséget! Mérje a hőmérsékletet 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a kialakuló max. (állandósult) hőmérséklet-különbséget!

4. Mérje rögzített Peltier-teljesítmény és különböző fűtőteljesítmények mellett a kialakuló hőmérséklet-különbségeket és ábrázolja ezeket! Peltier-teljesítmény 5 W, fűtőteljesítmények: 3-11 W között 3-4 értéken mérve. A Peltier-elemet működtető tápegységet áramgenerátoros üzemmódban használja, és minden esetben írja fel az áram és feszültségértékeket is! Mérje a hőmérsékletet esetenként 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a fenti teljesítményeknél kialakuló max. hőmérséklet-különbségeket!

5. Az állandósult hőmérséklet-különbség – fűtőteljesítmény kapcsolat alapján számítsa ki a Peltier-elem teljesítmény-tényezőjét!

6. Határozza meg a Peltier-elem belső ellenállását!

7. Határozza meg a Peltier-együtthatót! A Seebeck-együttható és a Peltier-együttható ismeretében számítsa ki a \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% abszolút hőmérsékletet!


Függelék

A termikus egyensúly beállása viszonylag hosszú időt igényel. Ezért a \setbox0\hbox{$T_\infty$}% \message{//depth:\the\dp0//}% \box0% véghőmérséklet meghatározásánál kihasználjuk, hogy a fűthető oldal hőmérsékletének (\setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%) időbeli változása jó közelítéssel exponenciális jellegű:
\[T(t)=T_\infty+\left(T_0-T_\infty\right)\exp(-t/\tau)\]
ahol \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% a hőmérséklet kezdeti értéke, míg \setbox0\hbox{$\tau$}% \message{//depth:\the\dp0//}% \box0% a hőmérséklet-változás karakterisztikus ideje.