Folyadék szabad felszínének vizsgálata

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Vanko (vitalap | szerkesztései) 2012. szeptember 4., 16:52-kor történt szerkesztése után volt.


A szabad folyadékfelszín viselkedését egyenletes körmozgás esetén vizsgáljuk. A problémát alkalmas koordináta rendszer választásával visszavezetjük a szabad, nyugvó folyadékfelszín viselkedésére.


Tartalomjegyzék


Elméleti összefoglaló

1. ábra

A nyugvó folyadék szabad (az edénnyel nem érintkező) felszíne mindenütt merőleges a külső erők eredőjére. Ha ugyanis a felszín valahol nem lenne merőleges az eredő erőre, akkor az utóbbi felszínnel párhuzamos összetevőjének hatására a felszín közelében áramlás jönne létre, vagyis a folyadékot nem tekinthetnénk nyugvónak.

Ha egy folyadékot tartalmazó hengeres edényt függőleges tengelye körül \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% szögsebességgel forgatunk, akkor a folyadék felszíne felülről nézve homorú forgásfelület lesz. A folyadék az azonos tengely körül \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% szögsebességgel forgó koordinátarendszerben nyugalomban van. Ebben a rendszerben a felszínen lévő \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű folyadékrészre kétféle erő hat: az \setbox0\hbox{$mg$}% \message{//depth:\the\dp0//}% \box0% nagyságú, függőleges \setbox0\hbox{$(y)$}% \message{//depth:\the\dp0//}% \box0% irányú nehézségi erő, valamint a forgó rendszerben fellépő tehetetlenségi erők. Esetünkben az utóbbiak közül csak az \setbox0\hbox{$m\omega^2x$}% \message{//depth:\the\dp0//}% \box0% nagyságú, a forgástengelyre merőleges és attól sugárirányban elfelé mutató centrifugális erő játszik szerepet (\setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% a folyadékrésznek a forgástengelytől mért távolsága). A folyadékfelszín mindenhol a két erő eredőjére merőleges helyzetet vesz fel (1. ábra). A kialakuló felület egy forgási paraboloid. A kísérletben ennek a forgási paraboloidnak egy, a forgástengelyen átmenő metszetét határozzuk meg.

Kísérleti berendezés

A folyadékot két egymáshoz közeli párhuzamos síklap által alkotott (téglatest alakú) edényben helyeztük el. (Továbbiakban a síklapokat egymáshoz végtelen közelinek tekintjük.) A forgástengely a téglatest egyik szimmetriatengelye. A forgó edényben kialakuló folyadékfelszín vizsgálatát egy olyan koordináta rendszerben végezzük, melynek \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% tengelye az \setbox0\hbox{$\omega=0$}% \message{//depth:\the\dp0//}% \box0% szögsebességhez tartozó (vízszintes) folyadékfelszínnel esik egybe, \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0% tengelye pedig a függőleges forgástengely.

Az 1. ábráról leolvasható, hogy

\[\tan\alpha=\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{mx\omega^2}{mg}=\frac{\omega^2}{g}x,\]

azaz

\[\mathrm{d}y=\frac{\omega^2}{g}x\mathrm{d}x,\]

ahonnan integrálással az

\[y=\frac{\omega^2}{2g}x^2+C\]

összefüggés adódik. A kifejezés egy parabola egyenlete, ahol a \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% integrálási állandó értéke a parabola csúcspontjának ordinátája. \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0%-t abból a feltételből kaphatjuk meg, hogy az állandó folyadéktérfogat miatt a \setbox0\hbox{$\int_0^R y(x)\,\mathrm{d}x$}% \message{//depth:\the\dp0//}% \box0% határozott integrálnak nullát kell adnia, azaz

 
\[0=\int_0^R \left(\frac{\omega^2}{2g}x^2+C\right)\,\mathrm{d}x=\frac{\omega^2}{6g}R^3+CR,\]
(1)

ahonnét

\[C=-\frac{\omega R}{6g}.\]

Így a folyadékfelszín egyenlete:

\[y=\frac{\omega^2}{2g}\left(x^2-\frac{R^2}{3}\right).\]

A (1) kifejezésből az alábbi következtetések vonhatók le:

  • A parabola csúcspontjának ordinátája \setbox0\hbox{$(C)$}% \message{//depth:\the\dp0//}% \box0% arányos \setbox0\hbox{$\omega^2$}% \message{//depth:\the\dp0//}% \box0%-tel, ami alapján fordulatszámmérő készíthető.
  • A különböző szögsebességekhez tartozó parabolák átmennek a \setbox0\hbox{$\pm\left(\frac{1}{\sqrt{3}}R, 0\right)$}% \message{//depth:\the\dp0//}% \box0% pontokon. [Az utóbbi állítás könnyen belátható, ha (1)-be \setbox0\hbox{$y=0$}% \message{//depth:\the\dp0//}% \box0%-t helyettesítünk és \setbox0\hbox{$\frac{\omega^2}{2g}$}% \message{//depth:\the\dp0//}% \box0%-vel egyszerűsítünk.]

Mérési feladatok

  • A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.

1. Igazolja kísérletileg, hogy a forgó folyadék felszíne által kialakított parabola csúcspontjának süllyedése a szögsebesség négyzetével arányos!

Vegye fel a \setbox0\hbox{$\log C-\log\omega$}% \message{//depth:\the\dp0//}% \box0% függvényt és a grafikon segítségével állapítsa meg \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% kitevőjét! (Használja a \setbox0\hbox{$\log\omega^n=n\log\omega$}% \message{//depth:\the\dp0//}% \box0% összefüggést! A szögsebességet fordulatszámméréssel határozza meg!)

2. Határozza meg a nehézségi gyorsulás értékét!

Rajzolja fel a \setbox0\hbox{$C-\omega^2$}% \message{//depth:\the\dp0//}% \box0% függvényt, majd határozza meg a mérési pontokon át fektetett egyenes meredekségét, ami \setbox0\hbox{$\frac{R^2}{6g}$}% \message{//depth:\the\dp0//}% \box0% értékét adja meg. Ennek ismeretében számítsa ki a nehézségi gyorsulást!