A zaj mint jel
Különböző mennyiségek mérésénél általában a vizsgált mennyiség várható értékére vagyunk kíváncsiak, és a várható érték körüli fluktuációt zavaró tényezőnek tekintjük. Sok esetben viszont egy fizikai mennyiség "zaja" több információt hordoz a rendszerről mint maga a várható érték. A mérési gyakorlaton különböző zajjelenségeket vizsgálunk egy spektrumanalizátor segítségével. Először különböző ellenállások termikus zajának mérése alapján meghatározzuk a Boltzmann állandó értékét. Ezután egy félvezető dióda zajának méréséből az elektrontöltés értékét határozzuk meg. Végül a Barkhausen zaj jelenségét tanulmányozzuk.
az egyik legalapvetőbb zajformát, az ún. termikus zajt tanulmányozzuk. A termikus zaj véges hőmérsékleten jelentkezik a különböző állapotok betöltésének termikus fluktuációi miatt. Egy fermionikus rendszerben egy állapot betöltési száma n=0,1 lehet. A betöltési szám várható értéke a Fermi függvény, .
A betöltési szám szórás négyzete:
,
ahol kihasználtuk, hogy fermionokra n2=n. A kifejezést energia szerint kiintegrálva ( ) rögtön látszik, hogy a termikus zaj arányos a hőmérséklettel. A zaj mértékének pontos megadásához először definiálni kell a zaj mérésére használt mennyiséget. Egy zajmérés kísérleti megvalósítása a következő ábrán szemléltethető:
A mért I(t) jelből kiszűrjük az f0 frekvencia körüli f sávszélességű tartomány, és az így kapott jel szórásnégyzetét vizsgáljuk egy spektrumanalizátorral. Megfelelően keskeny frekvenciasávot alkalmazva a mért szórásnégyzet arányos lesz a frekvenciasáv szélességével, és az arányossági tényezőt nevezzük a zaj spektrális sűrűségének:
.
Megmutatható hogy a zaj spektrális sűrűsége nem más, mint a korrelációs függvény Fourier transzformáltjának a kétszerese. A zaj pontos definícióját megismerve a termikus zaj értékét a fluktuáció-disszipáció tétel alapján adhatjuk meg, mely egy rendszer egyensúlyi fluktuációi és az egyensúlyból kitérített rendszer lineáris válaszfüggvénye között teremt összefüggést. Elektromos áram esetén az ez egyensúlyi fluktuáció nem más mint az áramzaj, a lineáris válaszfüggvény pedig a külső feszültségre adott válasz, vagyis a vezetőképesség. Így egy rendszer áramzaja:
.
Így alacsony frekvencián ( ) az áramfluktuációk termikus zaja:
.
Hasonlóképpen a feszültségzaj:
Látjuk, hogy a termikus zaj segítségével "csupán" feszültségmérés alapján meghatározhatjuk egy rendszer abszolút hőmérsékletét. Persze a precíz zajmérések komoly méréstechnikai kihívást jelentenek, hiszen nanovoltos vagy még kisebb feszültségek fluktuációját kell pontosan mérni. Ennek ellenére a termikus zaj mérésének komoly metrológiai jelentősége van, hiszen számos módszerrel mérhetünk precízen hőmérsékletváltozást, de az abszolút hőmérsékletet nem könnyű meghatározni. A jelenleg érvényes hőmérsékletstandardok mind ún. másodlagos hőmérők, melyek nem alapvető fizikai törvény hanem megfelelő kalibráció alapján mérik az abszolút hőmérékletet. (A szobahőmérséklet körüli széles tartományban pl. platina vékonyréteg ellenálláshőmérőt használnak standardként.) A termikus zaj mérése alapvető fizikai állandók (Boltzmann állandó + elektron töltés) alapján vezeti vissza a hőmérsékletmérést feszültségmérésre, így a hőmérsékletstandardok kalibrálásának egyik alapvető módszere. A termikus zaj mellett még két fontos zajtípusról érdemes megemlékezni. Az egyik a szennyezők és rácshibák véletlen mozgásából adódó ún. 1/f zaj, mely alacsony frekvenciákon dominál, és a nevét is a zajsűrűség tipikus frekvenciafüggéséről kapta. A másik az elektrontöltés kvantáltságából adódó ún. sörét zaj, melynek a lényege egy egyszerű példán szemléltethető: Képzeljünk el egy elektronhullámot, mely áthalad egy T transzmissziós valószínűségű nyalábosztón. Az áthaladt töltés értéke T valószínűséggel 1 és 1-T valószínűséggel 0,így az áthaladt töltés T várható értéke körül T(1-T) szórásnégyzetű fluktuációt tapasztalunk. Ezt az elemi folyamatot több elektronra általánosítva megmutatható, hogy a sörétzaj nagysága a rendszerre kapcsolt feszültséggel arányos. A fenti példából érezhető, hogy a sörétzaj kisméretű rendszerekben válik fontossá, ahol egyszerre csak kevés elektron vesz részt a vezetésben.