CD író-olvasó optikai rendszerének tesztelése

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Lenk (vitalap | szerkesztései) 2012. november 7., 06:47-kor történt szerkesztése után volt.


A mérés célja:

A laborgyakorlat tárgya a Philips CD írókban és leolvasókban alkalmazott optikai fej (Optical Pickup Unit / OPU) és ennek gyártás során való tesztelésére kifejlesztett berendezés megismerése. A mérés célja a fej felépítésének, a CD olvasás és írás működési elvének megértése és elemzése, valamint a főbb műszaki paraméterek megmérése. A mérés során bizonyos elemeiben különböző, de hasonló felépítésű CD fejek összehasonlítása alapján lehetőség nyílik az egyes paraméterek nagyságrendjének rögzítésére és az érvényes tűrési tartományok kijelölésére.

Tartalomjegyzék


Szerkesztés alatt!

Elméleti összefoglaló

Bevezetés

A CD története és működése

Az audio (zenei) CD-k technológiáját 1982-ben fejlesztették ki a Philips és a Sony cégnél. Felismerve a technológiának a számítástechnikában nyújtott lehetőségeit, hamarosan elterjedt ebben a szférában is. A CD nagyon gyorsan fejlődő technológia volt, de a fejlesztések még nem voltak szabványosítva. A vállalatok eltérő formában kívánták előállítani termékeiket, ezért számos különböző technológia alakult ki, az iparág vezetői 1985-ben létrehozták a szükséges szabványokat. Az elfogadott szabványok meghatározták a tartalomjegyzék és a címtárak szerkezetét, valamint a logikai, az adatszerkezeti és az adatrögzítési rendszereket. A szabvány megalkotásában részt vett a Microsoft is, amely elkészítette azt a szoftvert, amely lehetővé tette a CD-ROM elérését a hagyományos DOS parancsokkal. A szoftver neve MSCDEX, amely a Microsoft Compact Disc Extensions rövidítése. Ezt az új szabványt High Sierra Specification-nek nevezték el. Ezt a specifikációt fogadta el az ISO nemzetközi szabvány is ISO 9660 néven. A hajlékonylemezek és merevlemezek koncentrikus sávokat használnak, ezzel szemben a CD-ROM lemezek a hagyományos hanglemezekhez hasonlóan egy spirálban tárolják az adatokat. A spirál azonban nem kívülről, hanem belülről indul. Két szomszédos csíkja a spirálnak 1.6 mikron távolságra van egymástól, így egy 25 mm-es sávban 16000-szer fordul meg a spirál, ami kinyújtva kb. 4.8 Km hosszú lenne. A mágneslemezeknél egyes területek mágnesezve vannak, jelezve az 1-es állapotot, mások nincsenek mágnesezve, jelezve a 0-s állapotot a CD-RAM és CD-AUDIO lemezen az információ (illetve a logikai 1-ek) olyan mélyedésekben, pitekben van elhelyezve (1. ábra),

A pitek szerkezete 1. ábra

amelyek különböző hosszúságúak és mélységük éppen akkora, hogy a pit aljáról és tetejéről visszaverődő nyalábok destruktív interferenciája révén a pitről gyakorlatilag nincs visszaverődés. A lemez lejátszásakor a sávra lézersugár fókuszálódik, és a lemez hátoldalán lévő rétegről visszaverődik. A pit nélküli felületről sokkal több fény verődik vissza, mint a barázdált felületről, így a visszavert fényt érzékelve lehet az 1-es és 0-s állapotokat meghatározni. Az eredeti CD technológiában a CD-t műanyagból préselték (a piteket belenyomták a szubsztrátba) akár a bakelitlemezt, így csak egy adott, viszonylag kis lézerteljesítményt biztosít az OPU az olvasáshoz, a lemez gyártás után már nem módosítható, csak tönkretehető. Az írható CD-R lemezek alapja egy gyártás során felvitt fényérzékeny festékréteg. Egy adott küszöb fölötti fényteljesítménnyel való megvilágítás hatására a festékréteg megváltoztatja törésmutatóját, irreverzibilisen. A megváltozott részeken az eredetileg nagy reflexiójú réteg reflexiója lecsökken. Az egyszer megírt CD többé nem törölhető, és az írási küszöb alatti lézerteljesítményekkel olvasható.

A CD-RW írható-olvasható CD-kben az információ rögzíthető, törölhető és újraírható. A technológia alapja egy fázisváltoztató Ag In Sb Te ötvözet, amelyben fázisváltozás hatására törésmutatóváltozás áll elő. A kétféle fázis egy kristályos és egy amorf fázis, a rétegek a lemez felületén úgy vannak kialakítva, hogy a kristályos fázis sokkal nagyobb reflexiójú, mint az amorf. Az amorf fázis a réteg hirtelen magas (500-700o C) hőmérsékletre melegítésével és hirtelen lehűtésével érhető el a kristályos fázisból (írás). Lassú, közepes hőmérsékletre hevítés hatására az amorf fázis ismét teljesen kikristályosodik (törlés). A hirtelen lokális hevítés – íráskor nagyteljesítményű lézernyalábbal való lokális megvilágítás hatására jön létre. Törléskor kisebb teljesítményt alkalmazunk de hosszabb ideig (lassúbb lemezforgás mellett), hogy a pitek átkristályosodjanak. A CD-ROM lemezek esetén a szektorok 2048 byte-osak. Minden szektor eleje egy 12 byte-os szinkronmezőt és egy 4 byte-os fejlécmezőt tartalmaz. Mivel csak egy spirál van, a fejlécmező a szektor címét perc:másodperc:századmásodperc formában tartalmazza.

A mágneses lemezek esetén problémát okozott az, hogy minden sávban ugyanannyi szektor van, ezzel a lemez belső részén nagyobb lesz az adatsűrűség. Ennek kiküszöbölésére szolgált a Zone Bit Recording eljárás. A CD-ROM lemezeknél ilyen gond nincs, mivel a szektorok fizikai hossza állandó. Ha a forgási sebesség (szögsebesség) állandó, akkor a spirálnak az olvasófejhez viszonyított sebessége a lemez külső részén sokkal nagyobb lenne, mint a belső részeken. Ezért a CD-ROM olyan rendszert használ, amely képes változtatni a meghajtó sebességét attól függően, hogy a lemez melyik részét olvassa. Ezzel biztosítják, hogy a fej és a lemez egymáshoz viszonyított sebessége állandó. Ezt állandó lineáris sebességnek (CLV, Constant Linear Velocity) nevezik. Például a külső részen a meghajtó kb. 200 ford./perc fordulatszámmal, míg a belső részen kb. 530 ford./perc fordulatszámmal forog.

A CD író és olvasó készülékekben alkalmazott optikai fej (OPU) felépítése

OPU általános szerkezeti felépítése 2. ábra
OPU fényképe 3.ábra
A fókuszálás ellenőrzése a C detektorok jelével 4.ábra
Barázdán tartás_mechanizmusa és a detektorok szerkezete 5.ábra

Egy általános optikai fej szerkezete a 2.ábrán látható. A CD-fej bonyolult optikai mechanikai és elektromos szerkezet, és amelyben az adott optikai és mechanikai rendszer által nyújtott lehetőségeket maximálisan kihasználták. A fényforrás egy dupla hetero-átmenetes GaAlAs lézerdióda, amelynek nominális hullámhossza 790 nm. Miután a lézerdióda nyalábja elliptikus, és nagyon divergens, egy kollimáló lencse párhuzamosítja a nyalábot. A fő nyaláb egy része egy referencia-detektorra, un. forward sense detektorra jut. Ezt a fotodiódát mindig akkora árammal hajtják meg, hogy a rajta eső feszültség konstans legyen, így az áramértékből a ráeső fény mennyiségére lehet következtetni, miután ellenállása a ráeső fény hatására lineárisan változik. Ezt a detektort használják az egyes funkciókhoz (olvasás, írás, törlés) szükséges lézerdióda-teljesítmények, illetve áramok beállítására. A beállítás során kimérik, hogy mekkora áramot kell a lézerdiódának felvenni, és eközben mekkora áramot kell a fotódiódára adni, miközben az OPU kimenetén a kívánt fényteljesítmény mérhető (ezt közben teljesítménymérővel mérik). A különböző fényteljesítmény-szintekhez tartozó összetartozó LD-áram – FS-áram párokat elraktározzák és az OPU vonalkódjára is rányomják. A kollimátor után egy diffrakciós rácsra esik a nyaláb, amely két diffraktált rendet diffraktál 10% körüli hatásfokkal un. szatellit foltokat hozva létre. A szatellit foltok szerepét a 4. ábrán követhetjük, a fő folt barázdán való tartását végzik. A fő és a két diffraktált nyaláb az osztókockán és az objektíven keresztül - amely mechanikailag egy külön elektromágnesesen dönthető aktuátorba van szerelve – a CD lemezre kerül. Az objektív egy nagy numerikus apertúrájú, aszférikus fókuszáló lencse, amely egy elektronikus aktuátorba van szerelve. Ez az aktuátor a lemez és a lencse relatív pozícionálását végzi az olvasás és írás során folyamatosan (optikai tengely irányú és trackre merőleges irányú elmozdulásra képes két elektromágneses tekercs segítségével). A polarizációs osztókocka az s irányban polarizált nyalábot átengedi, a p polarizációjú fényt pedig 90o-al eltéríti. A nyalábot az osztókocka előtt egy polarizációs szűrőn bocsátják át, hogy az esetleges nem megfelelően polarizált komponenseket kiszűrjék. Az osztókocka után egy lambda-negyedes lemezen halad át a fény, amely cirkulárisan polarizálja, a CD lemezről való visszaverődés után pedig ezen a lemezen újra áthaladva az eredeti polarizációra merőlegesen lesz polarizálva. A lemezről a visszaverődött fő és szatellit-nyalábok az objektíven, a lambda-negyedes lemezen, az osztókockán és egy asztigmatizmust szolgáltató elemen (a szerkezetet bemutató 1. ábrán ez egy hengerlencse) áthaladva a jel és szatellit-detektorokra jutnak. Az osztókocka a fényt nem egyenesen engedi át, hanem 90o-al tükrözi, miután a polarizációja a lambda-negyedes lemezen való kétszeri áthaladás után elfordult.

Az OPU működése

Az OPU működés során a lemeztől mindig fókusztávolságban halad, a távolságot aktív szabályozással állítja be az aktuátor vezérlésével. Az objektív a lemez felületén három fényfoltot hoz létre, amelyek közül a középső tartalmazza a fény több mint 80 -át és a pitekről illetve a barázdáról verődik vissza, míg a másik kettő, szatellit-fény, a barázdán tartást végzi. A szatellit fények pontosan a trackek között félúton futnak, és az un. szatellit detektorokra verődnek vissza. Az érzékelő detektor-szegmensek feladata a különböző hibajelek generálása, és a kiolvasott információ elektromos jellé alakítása. A fő folt egy négy szegmensből álló, C jelű detektorra verődik vissza. Az információt tartalmazó jelet a négy szegmens összege adja, vagyis az összes, a fő foltból visszaverődött fény: C1+C2+C3+C4.

A fókuszálás pontosságát a detektor-szegmensek összehasonlításából kapjuk. A visszaverődött fő nyaláb áthalad egy asztigmatizmust képező hengerlencsén, amelynek hatására a detektorra eső folt elliptikus lesz, ha a lemez nincs pontosan fókuszban (4. ábra). Ha a fókuszálás jó, a detektorokra eső folt teljesen kör alakú és szimmetrikus. Ha a fókusz nem pontos, akkor a detektorokra jutó folt a leképezés után nem kör, hanem ellipszis, tehát a fényeloszlás nem egyenletes.

A fő detektor-szegmensek jeléből egy fókusz-hiba jelet generál az elektronika: FE = C1 + C3 – C2 – C4. A fókusz-hiba jel vezérli az aktuátort lemezre merőleges irányban mozgató tekercset. A jó fókuszáláshoz az aktuátor mozgatásával az FE jelet 0-ra állítja, ami kör alakú visszavert foltot feltételez. A barázdán tartást az aktuátort a lemezzel párhuzamosan mozgató tekercs vezérlésével érjük el. Az ehhez szükséges hibajelet a két szatellit detektor-szegmens jeléből és a fő detektorok jeléből képezzük. Az elv az, hogy a szatellitfoltok az egyenként kétszegmensű szatellit-detektoron szimmetrikusak legyenek, a fő folt is szimmetrikus a központi detektor négy szegmensén, és a bal oldali szatellit-detektorok együttes jelét is összehasonlítjuk a jobb-oldaliak jelével. A hiabjelet a szegmensek közötti és a bal illetve jobboldal közötti különbségek kombinációjából állítja elő, megfelelő súlyozással.

Az OPU működése során gyakorlatilag három különböző optikai teljesítményt kell a lemezre leadni: olvasás, írás, törlés. Ezeket a lézerdióda meghajtó áramának beállításával állítja be az elektronika. A vezérlés logikája az, hogy az egyes teljesítményértékekhez tartozó áramokat külön-külön vezetjük a lézerdiódához, és csak közvetlenül a lézer mellett adjuk össze. Az olvasás teljesítménye 0,7 mW, ezt adja ki az OPU olvasáskor, és ez az alaphelyzet, ha a CD be van kapcsolva, akkor az OPU mindig ezen a szinten világít. Az írási teljesítmény 14 mW, ezt egy külön árambemeneten kapja meg a lézer. Miután impulzusüzemben működik, és nem szerencsés a „nagyáramú” bemenetet a generátor oldalon kapcsolgatni, egy külön WPON vezérlőbemenet kapcsolgatja az árambemenetet. A törlési szint 20 mW, az írási és olvasási áram közötti különbséget egy harmadik árambemeneten kapja meg a lézer, amelyet egy külön EPON vezérlő-jel kapcsolgat.

A lézeráramok vezérlése 6. ábra

Csak az I_read bemenet: olvasás

I_read + I_write együttesen: írás

I_read + I_write + I_erase együttesen: törlés


Az OPU funkcionalitásának egyik legfontosabb mérőszáma az un. jitter, tulajdonképpen a beállításából eredő kiolvasási, írási pontatlanság, a zaj és a lemezhibák együttes mérőszáma. Jitter: a lemezen lévő mélyedések, az un. pitek 3 és 11 órajel (mintavételezési szinkron-jel) hosszúságúak. I3= 683 ns, I11 = 2541 ns. Ha az OPU ferdén világít a lemezre, a folt szóródik, vagy a lemezen a pitek effektíve nem egyenlő hosszúságúak, a kiolvasott HF jel nem lesz szinkronban az órajellel. A fáziskülönbséget az órajel-periódus százalékában adjuk meg. A tényleges jitter jelet számos mérés után statisztikai összegzés útján számolja a gép (RMS jel)

A vezérlő kezelése

Az OPU összeszerelése után az egyes elemek funkcionális tesztjét, és az OPU mint rendszer funkcionális tesztjét végzi el a „végmérő”, az a készülék, amely a jelen mérési gyakorlat eszköze. A vezérlő gyakorlatilag automatikusan működik, futását egy program vezérli, amely automatikusan betöltődik. Ez a program minden mérési és beállítási feladatot elvégez, a mért adatokat a határértékekkel együtt a képernyőre írja. A mérés során a feladat a kiemelt mérési lépésekben a mért értékek leolvasása a képernyőről lépésenként, és az adatok alapján következtetések levonása, valamint lézer- és OPU karakterisztikák összehasonlítása. A vezérlő bekapcsolása: először ellenőrizni kell a nyomásmérőn, hogy kap-e a rendszer sűrített levegőt. A nyomásmérő a bal oldalon mélyen az asztal alatt a lábra szerelve található. Ha nincs nyomás, a mérésvezető gondoskodik a kompresszor bekapcsolásáról (a vákuumgőzölő szobában a kompresszor kapcsolója a villanykapcsoló mellett van az ajtótól jobbra, és a szelepet is ki kell nyitni a porlasztó berendezés mögött a fal mellett). Ha van nyomás, a piros forgókapcsolót kell elfordítani (bal kéz felől). A rendszer elindul, és bejelentkezik a mérőprogram egy kis menüsorral, amelyben választani lehet termelés és kalibráció között. Ha a teszt OPU-t kívánjuk mérni (ennek a kódja nem szinte csak nullákat tartalmaz, mint a kalibrációs OPUk kódjai) Production menüpontot kell választani, és itt az OPU 29 alpontban a 19. pontot, ugyanis az OPU-ban Mitsubishi típusú lézer van 1530.2 kóddal, amely az OPU vonalkódjában is szerepel. Ha kalibrációs OPU mérését kívánjuk elvégezni Calibration menüpontot válasszuk. Ha rosszul választunk, és elindítjuk a mérést a gép „Wrong product choice” hibaüzenettel leáll a vonalkód leolvasása után és rögtön újra felajánlja a választás lehetőségét. A rendszer indításakor külön be kell kapcsolni a külső lézer tápját a kapcsoló-gomb elfordításával. OPU behelyezése: az OPU-t csak földelt karperecet viselő személy foghatja meg. Oldalról megfogjuk az OPU-t, a szalagkábel végéről lehúzzuk a kis rézlemezt és a fészekbe helyezzük: megbillentve előbb a jobb oldalát illesztjük a sínhez, aztán befektetjük és előretoljuk ütközésig. Ezután a hozzávezető szalagkábel szabad végét a hozzánk közelebb eső zöld nyák szabad csatlakozójába illesztjük, vízszintesen csúsztatjuk a barna műanyag leszorító alá, és amennyire tudjuk, benyomjuk. A gép indítás után pneumatikusan rászorítja a csatlakozót. A mérést alapvetően az ajtó zárásával indítjuk el. Behúzzuk a tolóajtót jobbra ütközésig, ennek hatására elindul a mérés. Ha folyamatos üzemmódban vagyunk a mérés elejétől végéig automatikusan lefut, és ha az OPU-t megfelelőnek tartja zöld mezőben kiírja a fontosabb mért paramétereket. Kérdés: melyek ezek a paraméterek és miért fontosak? Lépésenkénti futtatás: még az ajtó zárása előtt a 3-as gombot megnyomva a Single mező NO jelzésből YES-be vált, és minden egyes mérési lépés csak az ENTER gomb megnyomása után kerül végrehajtásra. Ha meg akarjuk szakítani a mérést a 3-as gombbal visszatérünk Continuous üzemmódba, és a kézi vezérlőn az ABORT gomb többszöri megnyomásával kilépünk. Az ABORT-ot addig nyomogatjuk, amíg az OPU-t fedő tolóajtó ki nem nyílik. Általános elv, hogy hibaüzenet esetén, vagy ha bármilyen folyamatot megszakítani akarunk az ABORT gombot kell nyomogatni a kézi vezérlőn amíg a kamraajtó ki nem nyílik. A kézivezérlő másik két gombját csak speciális esetben kell használni, mikor a képernyőre kiírt választási lehetőségek között szerepel és azt a megfelelő funkciót kívánjuk választani. Ilyenkor a program mindig eligazítást ad. A gép egy lépés végrehajtása után kiírja a felső állapotmezőbe a lépés számát, és hogy fut, vagy befejezte. Befejezés után kiírja a lépésben mért értéket, a nominális, várt értéket és a mérendő érték tűrési határait. Ezeket mind fel kell jegyezni, ha éppen mérési feladatot hajtunk végre és egy olyan lépés van éppen soron, amelynek eredménye a jegyzőkönyvben szerepel.

A végmérő részletes ismertetése

Az ismertetésben a rendszer elemeiről és az egyes mérési lépések funkciójáról találunk leírást. A laborgyakorlat elvégzéséhez át kell tanulmányozni ezt a fejezetet, de az egyes lépések leírását mérés közben is egyeztetni lehet a számítógép által kiírt adatokkal illetve elvégzett műveletekkel (OPU pozícionálás stb.)

  • A végmérő a következő részekből áll:

1. ipari számítógép: futtatja a mérőprogramot és vezérli a kártyákat, fogadja a mért adatokat és tárolja, valamint hálózat esetén továbbítja őket a szerver fele. A monitoron jelennek meg a program futása közben az információk

2. mérő- és vezérlőkártyák: egy részük egy külön szekrényben található, közösen a számítógéppel, mások közvetlenül az OPU mellett találhatók, az OPU tápellátását és a detektorjelek közvetlen fogadását és továbbítását végzik

3. fészek: ebben helyezkedik el az OPU a mérés során

4. Yamaha motor: nagypontosságú léptetőmotor, amely az OPU-t a mérőpozíciókba mozgatja

5. 4OSD: egy kalibrált detektor-dióda, amely az OPU által kisugárzott (CD működés közben a lemezre jutó) teljesítményszintek mérésére szolgál. A teljesítményszinteket és a hozzátartozó meghajtó áram-értékeket különböző OPU funkciókhoz (olvasás, írás, törlés) rögzített teljesítményszinteken mérjük.

6. CD tesztlemez: ezt az OPU funkcionalitásának tesztelésére használjuk, normál méretű, de különleges track-ekkel teleírt lemez, amelyben az egyes track-ek a különböző hibák (pl. jitter) mérésére szolgálnak.

7. lemezmotor: a tesztlemezt forgatja, nagystabilitású motor, amely alapvetően két sebességgel, 4.7 illetve 10 Hz-el forog. A megfelelő sebességet a mérési funkciótól függően a vezérlő elektronika választja ki

8. optikai rendszer beállítását ellenőrző lézer és kamera: ez egy zöld (tehát a lézerdióda hullámhosszától távol eső hullámhosszú) lézer, amellyel az OPU – objektív pozíciójának ellenőrzését végezzük, a lencséről reflektált foltok kamerán való megjelenítésével

9. oszcilloszkóp: a lézerimpulzus alakjának megjelenítésére szolgál, a mért értékeket (felfutási idő) automatikusan továbbítja a mérőkártya és számítógép felé

10. nyomtató: a mérés után nyomtat egy matricát, amelyen rajta van, hogy az OPU megfelelt vagy sem, illetve a legfontosabb mért paraméterek értéke, amelyek alapján a CD-be szerelés után a CD szoftvere beállítja a megfelelő meghajtó áram-értékeket.

  • A mérés során az OPU-t a Yamaha motor segítségével négy mérőpozícióba mozgatjuk:

1. Alappozíció, itt tesszük be az OPU-t

2. OSD alatti pozíció, itt mérjük meg az OPU-ból az objektív lencsén keresztül kijutó lézerteljesítményt

3. Lemez alatti pozíció, itt mérjük meg az OPU funkcionalitását, a CD olvasással kapcsolatos paramétereit

4. Külső lézer alatti pozíció, itt mérjük meg az optikai elemek mechanikai beállítását

A mérőrendszer összefoglalva a következő OPU-paramétereket ellenőrzi: - az OPU lézerteljesítményeit (olvasás, írás, törlés) és a hozzájuk tartozó meghajtó áram-értékeket - az objektív fókuszálási készségét (lemezen) - a sávkövetési készséget - a detektorok pozícióját - az objektív pozícióját - a rács diffrakciós szögét - a CD olvasáskor keletkező időbeli jel-ingadozást (jittert) - az aktuátor pozícióját (merőlegességét) fókuszáláskor A program a méréssorozatot lépésekre bontva hajtja végre. Minden lépésben külön funkció valósul meg, a lépéseket a program, a kiértékelő szoftver és a kiértékelő személy a sorszám alapján azonosítja. Minden lépéshez tartozik egy mérendő mennyiség, egy nominális mért érték és egy hibasáv, azaz lehetséges min. és max. mért értékek. Ha a mért érték a sávon kívülre kerül, az OPU nem megfelelő. A mérési sorozat főbb lépései, amelyek a mérésünk szempontjából relevánsak az alábbiakban vannak részletesebben kifejtve. A laborgyakorlat során gyakorlatilag lefuttatjuk lépésenként a programot, és feljegyezzük az egyes lépésekben mért értékeket és a mérési érték határait.

Ezeket a program egy sorban kiírja a képernyőre, a mérés számával együtt.:

  • 11. Read barcode – vonalkód leolvasás, az OPU azonosítása. Minden OPU-n van egy kis matrica a vonalkóddal, ezt olvassa le a lézeres vonalkódleolvasó.
  • 32. Forward sense connect – ellenőrzi az Fs érzékelő dióda csatlakozását. Feszültséget kapcsolunk az Fs diódára és a rajta eső feszültséget mérjük. A diódával két másik közönséges dióda is sorba van kötve, védelmi célokból. Ha az Fs dióda szakadás, e két dióda nyitófeszültségét mérjük (1.4 V), ha rövidzár, akkor a feszültség nulla. Ha a csatlakozás jó, akkor a feszültség az Fs dióda feszültsége, 0.74 V és a védelmi diódák nem nyitnak ki.
Forward sense tesztelő kör 7. ábra
  • 40. Forward sense – ellenőrízzük a Forward sense dióda működőképességét. A rendszer 1V feszültséget kapcsol az OPU saját lézerdiódájára, és méri az FS dióda áramát. Ez az áramérték 50 A körüli, ha ettől nagyon eltér az érzékelődiódát a mérő automatikusan rossznak minősíti. Az áramot a DA kártya feszültséggé konvertálva méri meg. Miután az FS dióda végzi el az összes teljesítményszint-szabályozást az OPU működése során, az OPU rossz ha nem működik az FS.

Funkcionálisan a lépés azon alapszik, hogy a lézerdióda optikai teljesítménye sokkal kevésbé változik a rajta eső feszültséggel, mint az árammal, így adott feszültség esetén a teljesítményérték a lézerdiódák között kevésbé szór, mint azonos áram esetén.

  • 41. Laser current – az előző lépéshez kapcsolódóan, az 1V lézerdióda-feszültséghez tartozó lézeráramot is megmérjük. Ennek értéke nominálisan sokkal jobban szórhat, mint a teljesíményértékeké.
  • 42. Read power – Ez a mérés tulajdonképpen azt ellenőrzi, hogy a lézerből a teljesítmény a mérőkészülé érzékelőjére (OSD dióda) jut-e. Az OSD dióda elő van feszítve, fény hatására a vezetőképessége megnő, és megnő a rajta átfolyó áram. Ez a változás a ráeső fényteljesítménnyel lineáris, ezt használjuk ki a méréshez. Ez a mérési pont is az előzőhöz kötődik, a lézerre adott 1V feszültség hatására érzékel az OSD valamilyen kisugárzott fényt.
  • 48. Adjust 0.7 mW – Ebben a beállításban úgy állítjuk be a lézer áramát, illetve teljesítményét, hogy az OPU-ból kisugárzott (az OSD-re jutó) fény 0.7 mW legyen. Ez az olvasási teljesítmény, a lézer működés közben ezen a teljesítményen sugároz, ha nincs írás vagy törlés. A lézeráramot 0.1 mW-onként változtatjuk, amíg a kívánt teljesítmény eléri a 0.7 mW-ot. Ha egy lézerdióda rossz, akkor a 0.7 mW-ot esetleg csak olyan nagy áramoknál éri el, amelyek már tönkretehetik a mérőkészüléket. Ezért be van építve egy OPU (ill. lézerdióda) típusától függő áramkorlát, amely nem engedi az áramot bizonyos érték fölé emelni. Ugyanakkor e pontban gondok lehetnek az OSD dióda hibája miatt is. A túláramvédő ilyenkor a lézerdiódát védi a túl nagy áramtól, ami meghibásodást okozhat.


  • Kérdés: Miért nem esett ki az itt kieső OPU az előző lépésnél (feltesszük, hogy az OSD teljesen megfelelően működik)?

Megjegyzés: a hiba oka lehet az OSD dióda nem jó beállítása is, pl. túl közel vagy túl messze van az OPU-tól. Az OSD dióda beállításánál ezért gondosan kell erre ügyelni (csere után), és kalibrációs darabot kell használni.


  • 49. DASC – V 0.7 mW – Eltárolja a gép azt a feszültséget, amit a lézerdiódára kellett kapcsolni ahhoz, hogy 0.7 mW-ot adjon le. Ha ez a feszültség túl nagy, akkor a lézer rossz, mert az írási és törlési funkciókhoz olyan nagy feszültségre ill. áramra lesz szükség, hogy az OPU nem bírja majd ellátni a feladatot.
  • 50. Measure 0.7 mW – visszaméri a 0.7 mW teljesítményt, és ha nem pontos, 0.1 mA lépésenként korrigálja. Ez tulajdonképpen a beállító ciklus része, de logikailag különválasztja a teljesítménymérést.
  • 60. I_read 0.7 mW – megméri a 0.7 mW tartozó FS áramot, ami az előző lépésekben beállított 0.7 mW-hoz tartozik. Ez a kiinduló lépés az FS diódán keresztül történő áramszabályzásra (eddig a készülék az OSD-vel szabályzott).
  • 61. I_read 0.7 mW – visszaméri a lézerdióda áramát, amely az előzőleg beállított teljesítményszinthez tartozik
  • 62. I_read 0.7 mW_Calculate – Megnézi, hogy az utolsó 50 lépésben mennyire volt pontosan 0.7 mW a mért teljesítmény, és megnézi, hogy ahhoz mennyi FS áram tartozott. Ezután kiszámolja, hogy a pontos 0.7 mW-hoz mekkora FS áram tartozna, és eltárolja (felveszi az OPU-hoz kinyomtatott fő technikai adatok közé).


  • Kérdés: Miért nem áll meg teljesen pontosan 0.7 mW-on a kisugárzott teljesítmény minden OPU esetén?


  • 70. Adjust 6 mW – 0.1 mA-es lépésekben szabályozza a lézerdióda áramát, amíg az OPU-ból kisugárzott teljesítmény az OPU-n eléri nominálisan a 6 mW-ot. Ez az érték a dióda karakterisztikájának azon pontja, ahonnan a jelleggörbe egyenes
  • 71. V_DASC 6 mW – megméri a lézerdióda előző lépésben beállított feszültségét
  • 72. Measure 6 mW – leolvassa a teljesítményt az OSD diódán, ha nem 6 mW, akkor állítja még az áramot, amíg a lehetőségeihez mérten legjobban megközelíti, OPU-ról OPU-ra szór az érték
  • 73. I_Laser 6 mW – Megméri és eltárolja lézer áramértékét 6 mW teljesítmény mellett
  • 75. Pulsate_laser – impulzusmodulációt kapcsol a lézerre, tulajdonképpen a vezérlést és a PCB (a lézerdiódát közvetlenül vezérlő logikai áramkörök és vezetékek) működőképességét ellenőrizzük.

A 75 lépésben a WPON vezérlőt próbáljuk ki, kapcsolgatjuk a bemenetet, és ennek megfelelően modulált jel jelenik meg a fényben, amit a detektor dióda az oszcilloszkópra továbbít.

  • 76. Pulsate IErase – ugyanaz, mint az előző lépésben, de itt az EPON bemenetet kapcsolgatjuk.
  • 80. – 83. – 14 mW kimenő teljesítményen megméri a lézer áramát, feszültségét, valamint a beállított optikai teljesítményt a 71 – 73 pontokhoz hasonlóan
  • 85. Diff. efficiency – a lézerdióda karakterisztikájának (áram- optikai teljesítmény görbe) meredekségét számolja ki a 6 mW és 14 mW nominális optikai teljesítményekhez tartozó értékek alapján:
\[S=\frac{P_{6\ mW}-P_{14\ mW}}{I_{6\ mW}-I_{14\ mW}}\]

Ezt az értéket a későbbi teljesítményekhez szükséges áramértékek kiszámításához használja, a küszöbáram-értékkel együtt

  • 86. Threshold current – kiszámítja azt az áramértéket, ahol a karakterisztika egyenes része a vízszintes tengelyt metszi.
Lézerdióda-karakterisztika 8.ábra
  • 90. Adjust 18 mW – az előző küszöb és meredekség alapján beállítja a 18 mW nominális optikai teljesítményt, és 0,1 mA-lépésekben korrigál.
  • 91.-93. – megméri a 18 mW nominális értékhez tartozó áramot, feszültséget, és a beállított teljesítményt a71-73 lépésekhez hasonlóan
  • 110.-113. -20 mW nominális teljesítményt beállítja a görbe számított meredeksége és a korábban mért áramértékek alapján, valamint 0,1 mA lépésekkel a lehető legjobban megközelíti. Visszaméri a lézer áramát, feszültségét és a beállított optikai teljesítményt
  • 114. – I Forward Sense 20 mW – Megméri az FS dióda áramát a beállított, 20 mW-ot legjobban megközelítő teljesítményen
  • 115. – I Forward Sense Calculate 20 mW – Kiszámolja az FS dióda áramot amely tényleges 20 mW-hoz tartozik, a beállított teljesítmény 20 mW-tól való eltérése alapján.
  • 150. Yamaha to pos 2. – az OPU-t a motorral a tesztlemez alá tolja
  • 175. Laser on – bekapcsolja az OPU-t a 0,7 mW – olvasási teljesítményen
  • 180. Search for focus – Fókuszkeresés történik,az aktuátor mozgatásával változtatja az objektív-lencse lemeztől mért távolságát, miközben a C detektorok jelét figyeli. Akkor áll meg, ha diódák jele együttesen maximális
  • 190. – Close focusloop – még pontosabban beállítja az aktuátor pozícióját, mint az előző lépésben. A lemez itt 10 Hz sebességgel forog. Itt nem a C diódák együttes jelét, hanem az un. Focus error jelet vizsgálja a készülék:
\[FE=C1+C3-\left(C2+C4\right)\]

Ha a fókusz nem pontos, akkor a detektorokra jutó folt a leképezés után nem kör, hanem ellipszis, tehát a fényeloszlás nem egyenletes. Az aktátor mozgatásával az FE jelet 0-ra állítja.

  • 250. Grating angle – a mérendő mennyiség a szatellit fények (a rács által létrehozott +/- 1 diffrakciós rendek) tracktől mért távolságát jelenti.

A mérés során kihasználjuk azt, hogy a lemez excentrikusan van felszerelve, azaz forgásközéppontja a geometriai középponttól kb. 110 m távolságra van. A pozícionáló motor úgy állítja be az OPU-t, hogy egy körülfordulás során 72%-ot essen a fénypont trackre, és 28%-ot mellé, a tükrös felületre. Ez a feltétele a pontos szögmérésnek. A sávkövetés ki van kapcsolva ebben a lépésben, miután a fénypont keresztezi a tracket. Az A és B fotodiódák jelét vizsgáljuk. Két track között a távolság 1.6 m, és optimális diffrakciós szög esetén a szatellitfoltok pontosan a két track közötti rész közepére, a középvonaltól +/- 0.8 m távolságra esnek. Optimális beállítás (szög) esetén a szatellitfények keresztezéskor fázisban érkeznek a trackre (vagyis a visszavert és detektált jelben egyszerre lesz minimum). Az A és B detektorok jelének fáziskülönbségéből számítja ki a gép a szögeltérést. Az oszcilloszkópon ilyenkor a normált A+B jelet láthatjuk.


Relatív fázis alapján a rácspozíció meghatározása 9.ábra
Relatív fázis alapján a rácspozíció meghatározása 9. ábra
  • 625. Laser PCB – az érzékelő diódák (C diódák) kontrollja. Az OPU-t a motor elmozdítja úgy, hogy a fény tükörfelületre essen, elvileg ilyenkor mindig van reflexió, nincs track, és ideális esetben a C diódák jele tiszta egyenjel (DC). Ebben a lépésben a C diódák jelének AC komponensét vizsgálja a gép.
  • 630. Measure values – megméri a C diódák jeleit és egyenként eltárolja őket. A fény a lemez tükröző felületéről verődik vissza. A mért értékeket az OPU optikai rendszerének, a visszavert jel útjának és a diódák pozíciójának jellemzésére használja a gép a 640-680 lépésekben
  • 640. Xc radial beamlanding - mennyire szimmetrikus a négyszegmensű C diódán a folt X irányban:
\[S=\frac{C1+C4-\left(C2+C3\right)}{C1+C2+C3+C4}\]
  • 650. Yc tangential beamlanding – mennyire szimmetrikus a folt Y irányban:
\[S=\frac{C1+C2-\left(C3+C4\right)}{C1+C2+C3+C4}\]
  • 660. Grating Z – ebben a lépésben a két szatellitfény távolságát vizsgáljuk, az A és B diódák jeléből lehet kiszámítani az eltolódást a szegmenseken való eloszlásból:
\[S=A1+B2-\left(A2+B1\right)\]
  • 665. Spot distribution – ebben a lépésben azt vizsgájuk, hogy a C diódához képest mennyire szimmetrikus a szatellitdetektorokra eső két visszavert fényfolt:
\[S=\frac{A1+B2-\left(A2+B1\right)}{A1+A2+B1+B2}\bullet{}100\]
  • 670. XAB Symmetry – azt vizsgájuk, hogy mennyire egyenlő a két szatellitfény intenzitása:
\[S=\frac{A1+A2-\left(B1+B2\right)}{A1+A2+B1+B2}\bullet{}100\]
  • 680. Grating ratio – gyakorlatilag a rács diffrakciós hatásfokát minősíti a visszavert szatellitfények (A,B diódák jele) és a nulladrend (C diódák jele) arányával.
  • 717. HF present –funkcionalitási teszt kezdete, bekapcsolja a track-követőt és olvas a lemezről. A leolvasott adatokat (a C diódák jelét) HF jelnek nevezzük. Ebben a lépésben a jel nagyságát mérjük meg, a C detektorok AC komponensének csúcsértékét
  • 720. Defocus – olvasási szempontból teszteli a beállított fókuszfoltot és a fókuszálás helyességét. Az aktuátor fókusztekercsét egy viszonylag nagy amplitúdójú (16V) 745 Hz frekvenciájú jellel vezérli, ezáltal egy periodikus ingadozást hoz létre a fókuszfolt méretében. Ez a HF jel modulációját eredményezi, ahogy az ábrán látható. Ez egy un wobble-error jelet generál, amely szintén periodikus, a megfelelő frekvenciával. Az aktuátort vezérlő jel félperiódusa alatt a HF jelben két minimumot találunk. A wobble-error jel tulajdonképpen a HF integrálja egy a moduláló jel negyed periódusáig – miközben a moduláló jel pozitív maximumról nullára csökken – mínusz a HF integrálja a következő negyed periódus alatt – miközben a moduláló jel nulláról a negatív irányban a minimumig csökken. Ha a fókuszálás ideális, a HF jel pozitív és negatív integrálja egyforma nagyságú, és egymásból kivonva őket, nullát kapunk.
Wobble-focus-error jel generálása 10.ábra
Wobble-focus-error jel generálása 10. ábra
  • 722. Jitter rel tr1 – a jittert számolja ki normál trackről való olvasás közben.

Jitter: a lemezen lévő mélyedések, az un. pitek 3 és 11 órajel hosszúságúak. I3= 683 ns, I11 = 2541 ns. Ha az OPU ferdén világít a lemezre, a folt szóródik, vagy a lemezen a pitek effektíve nem egyenlő hosszúságúak, a kiolvasott HF jel nem lesz szinkronban az órajellel. A fáziskülönbséget az órajel-periódus százalékában adjuk meg. A tényleges jitter jelet számos mérés után statisztikai összegzés útján számolja a gép (RMS jel)

  • 724. Jitter defocus – mesterséges jittert hoz létre a fókuszfolt modulálásával a 720 lépéshez hasonlóan. Az aktuátort moduláló jel 30 Hz frekvenciájú és 4 V amplitúdójú. Jitterméréseket végez a gép, és a jitter jel periódusa megegyezik a moduláló jel félperiódusával. Egy fél moduláló periódus alatt a jitternek két maximuma, vagy minimuma lesz, a jelet két részre osztja a moduláló jel szerint a maximumtól minimumig integrálja jittert egy változóba, utána a moduláló nullátmenetétől a negatív maximumig integrálja a jittert egy másik változóba, és a két változót egymásból kivonja.
Jitter vizsgálat a wobble segítségével 11.ábra
Jitter vizsgálat a wobble segítségével 11. ábra
  • 870. Perpendicular – ebben a lépésben az aktuátor merőlegességét ellenőrzi a gép. A Yamaha motor egy harmadik pozícióba mozgatja az OPU-t, ahol egy külső zöld lézer az objektív lencséjére világít. A visszavert foltokat egy kamerára képezi le az optikai rendszer, a képet egy monitoron nézhetjük. A monitorkép alapján, a foltok helyzetéből lehet eldönteni, hogy megfelel az OPU vagy sem. A lézert a mérés elején be kell kapcsolni a monitorral együtt.

Mérési feladatok

A méréshez 11 OPU áll rendelkezésre: 1 próba OPU, amely gyári, gyártási sorozatszámmal rendelkezik és tíz kalibrációs OPU, amelyek 1-től tízig vannak számozva.

1. A próba OPU-t mérje meg automatikus üzemmódban. Ellenőrizze, hogy a készülék jónak, vagy hibásnak minősítette-e (Zöld mezőben vagy pirosban jelennek meg a végső mérőszámok)

2. Válasszon ki egy OPU-t a kalibrációs szettből és mérje meg automatikus üzemmódban. Ellenőrizze, hogy az OPU megfelelt, vagy nem felelt meg. Ha nem felelt meg, keresse ki a lépést, amelyikben kiesett és azonosítsa azt. A tesztlépés azonosítása után próbálja meghatározni a hiba okát (pl. koszos az objektív lencséje). Ha a hibaok valamilyen külső körülményre vezethető vissza, próbálja meg megszüntetni azt, és mérje meg újra az OPU-t.

3. Mérje meg lépésenként a próba OPU-t. Jegyezze fel az összes e mérési leírásban ismertetett lépésben mért értéket, és az egyes lépésben a gép által megadott tűrési tartományt (azt az alsó és felső értéket, amelyek között az adott lépésben jónak fogadja el a végmérő az OPUt).

4. Mérje meg a kiválasztott kalibrációs OPU-t lépésenkénti üzemmódban és jegyezze fel a megadott lépésekben mért értékeket valamint a tűrési tartományokat.

5. Az egyes teljesítményszinteken mért áramértékek alapján rajzolja meg a teszt és kalibráló OPU-ban található lézerdióda karakterisztikáját. Hasonlítsa össze őket és értékelje ki a különbségeket.

6. Válaszoljon a mérési leírásban található kérdésekre

PDF formátum