Akusztooptikai fénydiffrakció vizsgálata

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Lenk (vitalap | szerkesztései) 2012. november 14., 07:28-kor történt szerkesztése után volt.


Tartalomjegyzék


Szerkesztés alatt!

Elméleti összefoglaló

Bevezetés

A Brillouin által megjósolt akuszto-optikai kölcsönhatást 1932-ben mutatta ki Debye és Sears. Az effektus felhasználását, vagyis akuszto-optikai elven működő eszközök kifejlesztését és ezek alkalmazását a kollimált, monokromatikus fényforrások, a lézerek elterjedése tette lehetővé. Akuszto-optikai eszközök működnek lézeres sornyomtatóban, nagyfelbontású fénymásoló berendezésekben, egyes spektrométerekben, és olyan analóg műveletvégző optikai rendszerekben, amelyek nagysebességű (a digitálisnál gyorsabb) Fourier-transzformáció, illetve konvolúció képzésre alkalmasak.

A továbbiakban megismerkedünk az akuszto-optikai eszközök működésének megértéséhez szükséges alapfogalmakkal, és az akuszto-optikai kölcsönhatás néhány tulajdonságával.

Elméleti alapok

A fény elektromágneses hullám, melyben az E elektromos térerősség és a B mágneses indukcióvektor periodikus változása a terjed. Ezek (vákuumban) a terjedési irányra egyenként és egymásra is merőlegesek. Lineárisan polarizált hullámról akkor beszélünk, ha a térerősség vektor a terjedési irány mentén végig egy meghatározott síkban marad (1. ábra). Polarizációs iránynak az elektromos térerősség vektor irányát nevezzük. Két egymásra merőlegesen polarizált hullám egymástól függetlenül terjed. Cirkulárisan poláros nyalábnak azt nevezzük, ha a térerősség amplitúdója állandó, de a végpontja a nyaláb mentén és időben is a terjedési irány körül forog (2. ábra). Általános esetben a nyaláb se nem lineáris, se nem cirkulárisan poláros, hanem elliptikusan poláros (a vektor forog, és az amplitúdója is változik), illetve lehet polarizálatlan is (ez az állapot pl. végtelen sok, véletlen kezdőfázisú lineárisan polarizált nyaláb összegeként képzelhető el).

Mérési feladatok

PDF formátum

Akusztooptikai fénydiffrakció vizsgálata