Kis fényintenzitások mérése zajos környezetben: Fázisérzékeny detektálás (lock-in)
Tartalomjegyzék |
Elméleti összefoglaló
Jel érzékelése zaj jelenlétében
Különböző jelek detektálásakor gyakran felmerül a probléma, hagy az érzékelni kívánt (hasznos) jel mellett egyidejűleg zaj is megjelenik. Hogyan tehet ilyen esetben a hasznos jelet elválasztani a zajtól? Ha a jel és a zaj frekvenciaspektruma ismert, megfelelő szűrő megválasztásával lehet a jel-zaj viszonyt javítani. Például, ha a mérni kívánt jel sávszélessége keskeny, akkor egy ehhez illesztett sávszűrővel a jel kiemelhető a zajból. Az 1. ábrán sematikusan bemutatott esetben a szelektív mérőrendszer csak a mérendő f0 frekvenciájú jelet, és az átviteli sávjába eső zaj komponenseket méri. Minél kisebbre választjuk a ∆f sávszélességet, annál jobb jel-zaj viszony érhető el.
A gyakorlati esetek ennél természetesen sokszor jóval bonyolultabbak, hiszen sem a zaj nem az 1. ábra szerinti sáv korlátózott fehér zaj, sem a jelek spektruma nem ilyen egyszerű. Azonban általában elmondható hogy a jel-zaj viszony javítására általánosan használható a sávszélesség csökkentése.
A szelektív mérőerősitőkben alkalmazott keskenysávú szűrők realizálása kis frekvencián (néhány kHz alatt) a gyakorlatban sok problémát hordoz magában (frekvenciastabilitás, alkatrészek tűrése, fizikai méretek). Ezen kívül a mérendő jel frekvenciájának is elegendően lennie, különben kicsúszik az áteresztési sávból. Ezeket a nehézségeket küszöbölhetjük ki a fázisérzékeny (lock-in) erősítők extrém kis sávszélességek mellett (pl. 10-3 Hz) igen nagy stabilitást (10-6) biztosítanak. Lehetővé teszik széles tartományban a működési frekvencia (1 Hz < f0 < 50 MHz) és a sávszélesség (10-2 Hz < f < 1 MHz) megválasztását. Használatukkal kiszűrhetők a diszkrét frekvenciájú zajok is (hálózati zavarok, mechanikus rezgések, stb.). A jel frekvenciaváltozását követő keskenysávú szűrőként viselkednek.
A fázisérzékeny detektálás elve
A módszer lényege, hogy a jeladó által szolgáltatott referencia jelet (vf), valamint a mérendő objektum és a környezeti zaj által befolyásolt, a detektor által érzékelt jelet (es) összeszorozzuk, majd az alul áteresztő szűrő segítségével a szorzat alacsonyfrekvenciás komponensét mérjük (2. ábra). Legyen a mérőjel és a referenciajel azonos alakú:
ahol . A mérendő objektum megváltoztathatja az amplitúdót, ill. a fázist is. (A környezeti zaj hozzáadódásától egyelőre tekintsünk el.) Általános esetben tehát a detektor által szolgáltatott jel:
ahol és a mérendő ( körfrekvenciához képest lassan változó) időfüggvények.
A szorzat átalakítások után a következő alakba írható:
Legyen a kimeneti aluláteresztő RC szűrő időállandója T. Ha teljesül az feltétel, akkor a szűrő az összeg kétszeres frekvenciájú tagját gyakorlatilag teljesen kiszűri, s ezzel a kimenő jel:
Ez a fázisérzékeny detektálás alapegyenlete. Ha a referencia és a detektorjel fáziskülönbsége állandó, akkor Vki arányos az Es jel amplitúdóval, Ez az ún. amplitúdó üzemmód. Ha Es állandó, akkor Vki a két jel közti fáziskülönbség koszinuszával arányos. Ebben az esetben fázismérésre használhatjuk a lock-in erősítőt. A mérési feladatok között mindkét üzemmódra található példa.
Vizsgáljuk meg, hogy milyen módon valósítható meg keskeny sávszélességű detektálás a lock-in erősítővel (azaz hogyan szűri ki az f0 frekvenciától eltérő zajokat). A 3. ábra alapján a frekvencia függvényében a legcélszerűbb nyomon követni a lock-in erősítő egyes pontjain a jeleket. Legyen a mérendő objektum jelet befolyásoló hatása konstans, vagy lassú változás (pl. lassan ülepedő oldat fényáteresztő képessége). Ebben az esetben az Es jel spektrumában csak 0, ill. kisfrekvenciás komponensek fordulnak elő. Jelöljük a felső határfrekvenciát es-el (3/a. ábra). Vegyük észre, hogy az es detektorjel ebben az esetben amplitúdómodulált jel, amelynek a spektrumában - mint ismeretes - az f0 frekvencia körüli oldal sávokban jelenik meg a moduláló jel. E hasznos jelen kívül azonban a detektoron a környezetből zaj is megjelenik (pl. az elektronikus áramkörök alacsony frekvenciás ún. 1/f zaja, valamint fénydetektálás esetében a környezeti megvilágításból származó 100 Hz-es - vagy fénycsövek esetében magasabb frekvenciás - zaj) (3/b. ábra). Az f0 frekvenciájú referenciajel és a detektorjel össze szorzás a után (es, vf) újabb frekvenciatranszponálás következik be: a hasznos jel egyrészt a 2f0 körüli oldalsávokba, másrészt az eredeti helyére, a 0-F sávba kerül. (Ez könnyen belátható a azonosság alapján.)
Hasonlóképpen a zajspektrum is transzponálódik az f0 körüli oldalsávokra (3/c. ábra)! A szorzat jelet a kimeneti aluláteresztő szűrőn átvezetve a mérendő jelspektrumot kapjuk vissza, és a környezetből származó kisfrekvenciás zaj nem zavarja meg a mérést (3/d. ábra).
A 3. ábrából kitűnnek az f0 mérőjel frekvencia és a kimeneti aluláteresztő szűrő T időállandó megválasztásának szempontjai:
- lehetőség szerint az f0 frekvencia közelébe ne essen a környezetből származó zajkomponens,
- legyen, hogy a frekvenciatranszponálások következtében az
oldalsávok között ne keletkezzen átlapolódás,
- legyen, hogy az f0 körüli oldalsavakban megjelenő zajkomponenseket az aluláteresztő szűrő megfelelően csillapítsa,
- legyen, hogy a jelspektrum ne torzuljon az aluláteresztő szűrőn keresztülvezetve. Látható az is, hogy a szűrő hatás nem követeli meg az f0 frekvencia nagyfokú stabilitását.
Mérési feladatok
PDF formátum