Gammasugárzás abszorpciója, folyadékszint- és sűrűségmérés
Tartalomjegyzék |
Szerkesztés alatt!
Elméleti összefoglaló
Izotópos mérésekről általában
Izotópos mérések összehasonlítása
A TSM-11 univerzális ipari sugárzásmérő
A berendezés felépítése
A TSM-11 univerzális sugárzásmérő alkalmazása
Az izotópos szintjelzés elve
Ratemeter
A mérőberendezés leírása
A mérőberendezés egy hengeres acéledényből, egy, az acélhengeren kívül elhelyezkedő pontforrásokból kialakított "vonalforrásból", és ezzel szemben az acélcső másik oldalán elhelyezkedő lineáris detektorból (G.M.- cső) áll. A detektor egy TSM-11-T típusú ratemeterhez csatlakozik. Az acéledényekhez egy átlátszó közlekedő edény csatlakozik hitelesítési célra (8. ábra).
A 9. és 10. ábrákon az Izotóp Intézet által megvalósított és forgalmazott TSM-11-T elnevezésű átlagbeütésszámmérő kezelő szervei és blokkfelépítése látható. A készülék legfőbb elemét az integrátort a jelformáló egy digitális osztón keresztül hajtja meg. Az integrátor időállandója a K2 fokozatkapcsolóval változtatható. Ez a kezelőszerv a műszeren kívül is hozzáférhető, ahogyan a 9. ábrán látható. Az integrátort a kijelzést szolgáló egységek követik, a "0" pont eltolást és a hitelesítést vagy skálanyújtást biztosító szervek. Ezeket egy-egy helipot segítségével (P1 és P2) lehet beállítani, amelyek szintén kívülről kezelhetők, a 9. ábrán látható P3 és P4 potméterek előre megadott határértékek beállítására szolgálnak. A beállított értékek elérésekor az alsó, illetve L2 felső határértéket jelző lámpák jeleznek a műszer (M) állásának megfelelően. A lámpák jelzéseivel egy időben a készülékben lévő relék egy-egy kapcsoló állapotát megváltoztatják, amelyek valamely más készülék vezérlésére, indítására használhatunk. Az egyéb kezelőszervek a készülék áramellátását, illetve az áramellátás jelzését szolgálják. Az egyéb kezelőszervek megnevezése a 9. ábráról leolvasható.
A ratemeter házában két rekesz csak speciális kivitelnél van kihasználva, ezért a mi méréseinkben ez lehetőséget adott arra, hogy az adott méréshez szükséges elektronika ezekbe a szabadon hagyott rekeszekbe kerüljön. Ezek kezelése az adott mérési feladatoknál megtalálható.
Mérési feladatok
- Kapcsolja be a TSM-11-T, TSM-11-R és a Valve Controller műszereket! Bemelegedési idő 2 perc. Győződjön meg a vízvezetékek helyes bekötéséről!
- Hitelesítse a ratemetert a közlekedő edény melletti magasságskála segítségével! Állítsa a P1 és a P2 helipotot 0 állásba! Az időállandót a legrövidebb értékre állítsa! A vízszintet állítsa be 0 értékre! Ezután a P1 helipottal állítsa be a ratametert (M mutatós műszer segítségével) 0-ra! Mindkét határérték-kapcsolót végkitérés állásba állítva és a kifolyót elzárva töltse fel az edényt a skála 50 cm-es értékéig! Most a P2 helipottal állítsa a ratemetert végkitérésbe, a 100 értékre (az M mutatós műszer segítségével)! A beömlést elzárva és a kifolyást megindítva kalibrálja a ratemetert a közlekedő edényben! Rajzolja meg a kalibrációs görbét!
- Szintentartás a feladat. Engedje le a vizet 40, ill. 20 cm-ig és a felső határérték kapcsolót állítsa olyan állásba, hogy a beállított értéknél nyissa-zárja a vezérelt csapot (x=min)! A vízcsap és a kifolyó együttes megnyitása után a magára hagyott rendszer a beállított érték körül ingadozik. Vizsgálja meg az ingadozás mértékét az alsó határérték-kapcsoló, valamint az időállandó beállításának függvényében! Írja le megfigyeléseit! Állítsa be a lehető legkisebb hiszterézist! Ügyeljen arra, hogy a víz befolyási sebessége körülbelül egyezzen meg a kifolyási sebességgel! (A vízbevezető csapot csak kicsit szabad megnyitni!)
- Kapcsolási hiszterézis vizsgálata. A feladat a víz 27 cm-en való tartása. Állítsa be a vízszintet 25 cm-re! A helipottal állítsa a ratemetert 0-ra! Állítsa be a P2 helipottal a maximális értéket a ratemeteren (maximális erősítés!). A be- és kifolyás fenntartása mellett a felső határérték-kapcsolóval álljon be 27 cm-re! Vizsgálja meg a hiszterézist az időállandó függvényében és hasonlítsa össze a 3. feladatban tapasztalattal! Keresse meg az optimális alsó határérték állást, ahol a rendszer már nem esik ki a vezérlésből! Írja le tapasztalatait!
A mérés befejezésekor zárja el a vízcsapot és a kifolyót!
Ellenőrző kérdések
- Mi a pontszerű és mi a lineáris sugárforrás?
- Állandó folyadék-szint mellett, hogyan változik az átlag beütésszám? Mi a szerepe az időállandónak?
- Hogyan változik a kifolyás sebessége a vízmagasság függvényében?
- Hogyan működik a határérték-kapcsolós szelepszabályozás?
- Hogyan lehet a két-pont szabályozás hiszterézisét csökkenteni? Erősítés? Időállandó?
- Hogy működik a ratemeter?
- Miért használunk γ-sugárforrást?
- Miből áll a mérőberendezés?
Gamma-sugárzás abszorpciós sűrűségmérés és alkalmazása
A folyamatellenőrzés és irányítás gyakran igényli az anyagsűrűség folyamatos mérését. A sűrűség
ahol m az anyag tömege és V az általa kitöltött térfogat.
Az iparban a sűrűségmérést számos területen alkalmazzák, ilyen pl. a bányászat, vegyipar, kőolajipar, textilipar, stb., elsősorban különböző transzport vagy egyéb technológiai folyamatok ellenőrzésére, szabályozására. A leggyakoribb probléma különböző folyadékok, oldatok, emulziók és szuszpenziók (zagyok) sűrűségének mérése. Az ipari alkalmazások szempontjából érdekes sűrűségtartomány a 500-2500 kg/m3. A radioaktív izotópos méréstechnikán alapuló sűrűségmérés elsősorban érintkezésmentes jellege miatt a legtöbb esetben jelentős előnyt kínál a többi sűrűségmérő módszerrel szemben (úszós, hidrosztatikus, mérleges, pneumatikus), sőt nemegyszer ez az egyetlen üzembiztos megoldás.
A Gamma-sugár abszorpciós sűrűségmérés elve
Ha az I vastagságú vizsgált mintát párhuzamos A0 intenzitású sugárnyalábbal sugározzuk be, akkor annak intenzitása az anyagon áthaladva a
törvény szerint változik, ahol μ az ún. lineáris, abszorpciós együttható, a tömegabszorpciós együttható. Mivel μ a sűrűséggel közelítőleg lineáris kapcsolatban van, a tömegabszorpciós együttható sűrűségfüggését első közelítésben elhanyagolhatjuk, csak a mért anyag minőségétől, a használt sugárzás energiájától függ. Ez utóbbiakat, valamint a mért anyagvastagságot, I-t állandónak tartva a dózisintenzitás ΔA megváltozása a Δρ sűrűségváltozástól függ. (6.)-t differenciálva
A (7.) egyenletből látható, hogy a mérés érzékenysége nagy, ha jól abszorbeálódó sugárzást emittáló sugárforrást használunk (μ’ nagy), illetve ha a mérési úthossz (I) és a forrás aktivitása (A0) megfelelően nagy. A sűrűségmérő elvi elrendezése a 11. ábrán látható.
Szemcseméret-eloszlás mérése sugárabszorpciós módszerrel
A gyakorlatban számos esetben előfordul, hogy szuszpenziókban, azaz folyadékokban lebegő - ülepedő szilárd szemcsézettel rendelkező anyagokban az átlagos szemcseméretet, a szemcseméret eloszlását kell meghatározni. Gyors és pontos módszer erre az ülepedés mérése sugárabszorpciós módszerrel. A mérés elvi elrendezése a 12. ábrán látható.
Az ülepítő közegben egyenletesen elkevert szemcsés anyag az I átmérőjű edényben van. A felszíntől x távolságra levő SF sugárforrásból kilépő, a folyadékfelszínnel közel párhuzamos sugárnyaláb intenzitását a D detektor méri.
Az abszorpció a tiszta ülepítő közegben
míg valamely cs szuszpenziósűrűség jelenlétekor
ahol a v index az ülepítő közegre (pl. víz) az s a szuszpenzióra vonatkozik, A0 a belépő intenzitás Av illetve As pedig a detektort érő intenzitások, cs pedig a szilárd anyag átlagos sűrűsége.
ahol ms a Vv térfogatú ülepítő közegben lebegő szilárd részecskék tömege. cs a (8.) és (9.) egyenletekből megkapható, ugyanis , tehát
Ha a t=0 időpontban egyenletesen felkevert szuszpenziót magára hagyjuk, a szilárd szemcsék ülepedése miatt x mérési magasságban cs időben változik, csökken, következésképpen As nő. (Itt jegyezzük meg, hogy a TSM-11 berendezésben elektromos kapcsolás megoldás révén a kimenőjel nem az As értéket, hanem egy olyan V feszültséget szolgáltat a mérés során amelyre igaz, hogy , ahol a K potméterrel beállítható érték, részletesen ld. később.) Az
függvény azon szemcsék súlyszázalék arányát adja meg, melyek ülepedési sebessége kisebb, mint .
A d átmérőjű ρs sűrűségű v sebességgel mozgó szemcsére ható erők:
a nehézségi erő
a felhajtó erő
a súrlódási erő
ahol η az ülepítőközeg viszkozitása, g a nehézségi gyorsulás.
Az ülepedő részecske az anyag viszkozitása miatt egyenletes sebességgel süllyed. Ilyenkor a súrlódási erő megegyezik a nehézségi erő és a felhajtóerő különbségével.
behelyettesítésével a t időpillanatban a folyadékfelszíntől x mélységben található szemcsék maximális átmérője
mely a paraméterek behelyettesítésével számolható. Az azonos t időponthoz tartozó d és f értékek adják a szemcseméret integrális eloszlását.
A sűrűségmérő berendezés
A mérésben használt sűrűségmérő berendezés az . ábrán látható. A sugárforrás 137Cs. Az alkalmazhatósági sűrűségtartomány 0,6-2,7 g/cm3. A detektor GM-cső. A jelfeldolgozó elektronika egy TMS-11 típúsú átlagbeütésszámmérő (raiemeter), melynek kimenetét vonalíró regisztrálja. A ratemeter kimenetén közvetlenül a sűrűséggel arányos jelet regisztráljuk.
A mérendő folyadékba motorral meghajtott keverőlapát merül, melynek fordulatszámát a Motor Revolution Controller egységgel folyamatosan lehet változtatni a Revolution Counter egységgel pedig fordulat/perc egységben mérni.
A folyadéktartályban 10 l víz és 2,3 kg adott sűrűségű () sűrűségű bauxitpor van leülepedett állapotban. A P1 és P2 helipotok megfelelő beállításával elérhető, hogy a vizsgált sűrűségtartomány a víz sűrűségének és a szilárd szemcsék + víz keverék átlagsűrűségének tartománya legyen, ami az adatokból 1-1,15 g/cm3.
Mérési feladatok
- Kapcsolja be a TMS-11-T, TMS-11-R, a Revolution Counter, a Motor Revolution Controller műszereket! A folyadékot ne keverje fel! Bemelegedési idő 10 perc. A K2 időállandó kapcsolót középső helyzetébe állítsa (). A bemelegedési idő után a skálanyújtást állító P2 helipot 900 helyzetében a „0” pont eltolást végrehajtó P1 helipottal állítsa be a víz sűrűségéhez a minimális sűrűséget úgy, hogy a mutató (ill. a regisztráló tolla) a skála kb. 10%-nál legyen. Kapcsolja be a vonalíró hálózati (NETZ) és működtető (ANTRIEB) kapcsolóit. 1 cm/min-os papírsebességet beállítva regisztráljon ebben az állapotban 5 percig.
- A Motor Revolution Controller műszer szabályozható gombjának elforgatásával indítsa el a keverőtárcsát! A motor percenkénti fordulatszáma a Revolution Counter kijelzőjéről leolvasható. Állítsa be azt a fordulatszámot, amelynél a ratemeter maximális értékre áll be (vegye figyelembe, hogy a beállási idő lassú!) 5-10 perc keverés után P2 helipottal állítsa be a mutatós műszert (s a regisztrálót) közel a maximális értékre (~ 90-es osztásra), az időállandót állítsa be a legnagyobb () értékre, és állítsa le a keverő motort. Figyelje meg a sűrűségváltozást a teljes ülepedésig!
- A regisztrátum alapján az f(t) függvény a kívánt időközönként százalékban leolvasható. Az ülepedést a folyadékfelszíntől kb. 12 cm-re vizsgáljuk (x = 0,12 m). , , , . Ezek alapján 3-ból a t időpillanathoz tartozó maximális méret meghatározható.
- Ábrázolja a d(t) függvényben az integrális eloszlási függvényt. f(t)! Ez az f (d) görbe a d szemcseátmérő függvényében a d-nél kisebb átmérőjű szemcsék hányadát adja meg. Ebből a görbéből a szemcseátmérő szerinti eloszlás (súlyszázalékban) differenciálással kapható meg. Ez - a d átmérővel rendelkező szemcsék arányát - súlyszázalékban adja meg.Végezze el az f(d) görbe grafikus differenciálását 10 pontban és ábrázolja az f'(d) függvényt! Határozza meg a leggyakoribb szemcseátmérőt!
-
A 4. pontban vázolt feladat\neggyorsítására számítógépes program áll rendelkezésre. A TSM-11 berendezés által szolgáltatott analóg jeleket a METRONEX műszer RS-232 soros vonalon keresztül közvetíti az IBM géphez. A program 7 - 20 μ közötti tartományban 0,2 μ-os lépésekben, az aktuális d-nek megfelelő t időpontokban méri a detektor által szolgáltatott feszültségértékeket és egy file-ban (Id. alább) elraktározza azokat. A mérés befejeztével ebben a file-ban tárolt adatokon a 4. pont alatti feladatok softwer-uton kiértékelhetőek. - A kiértékelő program kezelése:
- I. Program indítása:
- Kapcsolja be a számítógépet.
- Gépelje be a "mérés5"-öt, majd nyomjon "Enter"-t.
- II. Műszer előkészítése:
- Illessze össze a számítógépből kijövő 5-tűs kábelt a mérőműszerrel a jelzett irányban.
- Csatlakoztassa a pozitív mérő vezetéket a „V/Ω” bemenethez.
- Csatlakoztassa a negatív mérővezetéket a „COM” bemenethez.
- Válassza ki a "20 DCV" mérés tartományt.
- Kapcsolja be a METRONEX műszert!
- III. Mérés indítása:
- A program indítása után gépeljen „m”-et, majd nyomjon „Enter”-t.
- Gépeljen „1”-et, majd nyomjon „Enter”-t.
- Gépelje be az adatok elmentésére kerülő file nevét "xxxxxxxx.xxx" formátumban. A file-név megadása a következő: a mérést végző hallgató(k) neve(i) max. 8 karakterrel a nyolc karakter után adjunk be egy (pont) karaktert három helyen az évfolyam és tankör megjelölését számmal.
- IV. Mérés
- Mérés közben az adatok 4 koordinátában jelennek meg.
- Mérés végén nyomjunk meg egy gombot. A következő koordináta rendszer jelenik meg:
A programból bármely két gomb együttes lenyomása után léphetünk ki.
Megjegyzés
ha a program indítása után "a"-t gépel, majd "Enter"-t nyom, akkor a file-név begépelése után a file-ból begyűjtött adatokat jeleníti meg a program az előzőekben leírtakhoz hasonlóan.
Ellenőrző kérdések
PDF formátum