„3. Mérés: RC-körök vizsgálata” változatai közötti eltérés

A Fizipedia wikiből
89. sor: 89. sor:
 
==Mérési feladatok==
 
==Mérési feladatok==
  
'''1. Feladat''' A próbapanelen állítsunk össze egy $R$=10 k$\Omega$ ellenállásból és az ismeretlen $C$ kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. $U_be$ bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre f=1\,kHz frekvenciájú, $V_p$p=1\,V-os szinusz jelet. A bemeneti és a kondenzátoron eső $U_ki$ kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert.
+
'''1. Feladat''' A próbapanelen állítsunk össze egy $R$=10 k$\Omega$ ellenállásból és az ismeretlen $C$ kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. $U_{be}$ bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre $f$=1 kHz frekvenciájú, $V_{pp}$=1 V-os szinusz jelet. A bemeneti és a kondenzátoron eső $U_{ki}$ kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert.
  
 
Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen $C$ kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek?
 
Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen $C$ kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek?

A lap 2019. november 1., 23:49-kori változata


Tartalomjegyzék


Elméleti összefoglaló

Időben harmonikusan változó jel

Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [1]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% periodus idővel változó, \setbox0\hbox{$f$}% \message{//depth:\the\dp0//}% \box0%=1/\setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% frekvenciájú feszültség jel látható. Ha a jel amplitúdója \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% és fázisa \setbox0\hbox{$\varphi$}% \message{//depth:\the\dp0//}% \box0%, az időfüggést az alábbi alakban adhatjuk meg:
\[ U(t)=U_0cos(2\pi ft+\varphi).\]

Hasznos még bevezetni a körfrekvenciát \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0%=2\setbox0\hbox{$\pi f$}% \message{//depth:\the\dp0//}% \box0%. Az időbeli változást leíró differenciál egyenletek könnyebb kezeléséhez érdemes bevezetni az alábbi komplex változót, melynek valós része adja a mérhető jelet:

\[ U(t)=U_0e^{i(\omega t+\varphi)}=U_0e^i\varphi e^{i\omega t}.\]

A harmonikusan változó feszültség a komplex síkon egy \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% sugarú kört ír le. A komplex számot reprezentáló vektor fázisszöge \setbox0\hbox{$\omega t+\varphi$}% \message{//depth:\the\dp0//}% \box0% állandó szögsebességgel fordul körbe.

Általános időben harmonikusan változó feszültség


Lineáris áramköri elemek

Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső fezsültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás:
\[ U=RI \]

Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg

\[ I=I_0e^{i\omega t}, \]

melyből kiszámíthatjuk a rajta eső feszültsége:

\[ Ue^{i\omega t}=RI_0e^{i\omega t}. \]

Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0%=\setbox0\hbox{$RI_0$}% \message{//depth:\the\dp0//}% \box0% összefüggéssel számolhatjuk ki.

Általános időben harmonikusan változó feszültség
Egy \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0% induktivitással jellemezhető tekercs esetén a tekercs kapocsain mérhető feszültséget az alábbi képlet adja meg:
\[ U=L\frac{dI}{dt} \]

Az időben harmonikusan változó áramot ismét komplex alakban adjuk meg

\[ I=I_0e^{i\omega t}, \]

melyből a tekercs kapcsain mérhető feszültség:

\[ Ue^{i\omega t}=i\omega LI_0e^{i\omega t}. \]

Tehát a feszültség fázisa \setbox0\hbox{$\frac{\pi}{2}$}% \message{//depth:\the\dp0//}% \box0%-vel eltolódik az áramhoz képest, az amplitúdokat pedig a \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0%=\setbox0\hbox{$\omega LI_0$}% \message{//depth:\the\dp0//}% \box0% összefüggéssel számolhatjuk ki. Érdemes bevezetni az ellenálláshoz hasonló fogalmat, az impedanciát. Ez a komplex mennyiség lineáris áramkörökben megadja a feszülség és az áram komplex arányát. Induktivitás esetén \setbox0\hbox{$Z_L$}% \message{//depth:\the\dp0//}% \box0%=\setbox0\hbox{$\omega L$}% \message{//depth:\the\dp0//}% \box0%.

Általános időben harmonikusan változó feszültség
A \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% kapacitással jellemezhető kondenzátor esetén ismert, hogy
\[ Q=CU. \]

Ezt az összefüggést deriválva és átrendezve a korábbiakhoz hasonló alakú kifejezést kapunk:

\[ \frac{dU}{dt}=\frac{1}{C}I, \]

hiszen a kondenzátor eltolási árama a töltésváltozással egyenlő. A komplex feszültség-áram összefüggés az alábbi alakot ölti:

\[ Ue^{i\omega t}=\frac{1}{i\omega C}I_0e^{i\omega t}. \]

Tehát a feszültség fázisa -\setbox0\hbox{$\frac{\pi}{2}$}% \message{//depth:\the\dp0//}% \box0%-vel eltolódik az áramhoz képest, az amplitúdokat pedig a \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0%=\setbox0\hbox{$\frac{I_0}{\omega C}$}% \message{//depth:\the\dp0//}% \box0% összefüggéssel számolhatjuk ki. A kondenzátorhoz tartozó impedancia \setbox0\hbox{$Z_C$}% \message{//depth:\the\dp0//}% \box0%=\setbox0\hbox{$\frac{1}{\omega C}$}% \message{//depth:\the\dp0//}% \box0%.

Általános időben harmonikusan változó feszültség


Mérési feladatok

1. Feladat A próbapanelen állítsunk össze egy \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0%=10 k\setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0% ellenállásból és az ismeretlen \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. \setbox0\hbox{$U_{be}$}% \message{//depth:\the\dp0//}% \box0% bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre \setbox0\hbox{$f$}% \message{//depth:\the\dp0//}% \box0%=1 kHz frekvenciájú, \setbox0\hbox{$V_{pp}$}% \message{//depth:\the\dp0//}% \box0%=1 V-os szinusz jelet. A bemeneti és a kondenzátoron eső \setbox0\hbox{$U_{ki}$}% \message{//depth:\the\dp0//}% \box0% kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert.

Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek?

2. Feladat Vizsgáljuk tovább a fenti áramkört! A bemeneti pontokra \setbox0\hbox{$f$}% \message{//depth:\the\dp0//}% \box0%=100 Hz frekvenciájú négyszögjelet kapcsoljunk. Az oszcilloszkóp beállítása után, mentsük el a kimeneti jelet. A kisülési görbékre exponenciális függvényt illesztve határozzuk meg az időállandót, majd számítsuk ki a \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% kapacitás értékét ezzel a módszerrel is.