A zaj mint jel

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Halbritt (vitalap | szerkesztései) 2012. szeptember 7., 23:57-kor történt szerkesztése után volt.



SZERKESZTÉS ALATT!

A mérés célja

Különböző mennyiségek mérésénél általában a vizsgált mennyiség várható értékére vagyunk kíváncsiak, és a várható érték körüli fluktuációt zavaró tényezőnek tekintjük. Sok esetben viszont egy fizikai mennyiség "zaja" több információt hordoz a rendszerről mint maga a várható érték. A mérési gyakorlaton különböző zajjelenségeket vizsgálunk egy spektrumanalizátor segítségével. Először különböző ellenállások termikus zajának mérése alapján meghatározzuk a Boltzmann állandó értékét. Ezután egy félvezető dióda zajának méréséből az elektrontöltés értékét határozzuk meg. Végül a Barkhausen zaj jelenségét tanulmányozzuk.

A zaj definíciója

Előszöris definiáljuk zaj fogalmát. Egy időben változó mennyiség (pl. \setbox0\hbox{$I(t)$}% \message{//depth:\the\dp0//}% \box0% áram) mérésekor definiálhatjuk a mért mennyiség időbeli átlagát, \setbox0\hbox{$\left<I(t)\right>$}% \message{//depth:\the\dp0//}% \box0% illetve az átlagtól vett eltérést, \setbox0\hbox{$\Delta I=I(t)-\left<I(t)\right>$}% \message{//depth:\the\dp0//}% \box0%. A zajt jellemezhetnénk egyszerűen az áram szórásnégyzetével, \setbox0\hbox{$\left<(\Delta I(t))^2\right>$}% \message{//depth:\the\dp0//}% \box0%, azonban ekkor nem vennénk figyelembe hogy mérőrendzserünk csak véges sávszélességgel tud mérni, azaz egy bizonyos határfrekvencia fölött már nem tudjuk felbontani a jel időbeli fluktuációit. Ezért célszerű a zaj értékét a 2. ábrán szemléltetett módon egy bizonyos frekvenciasávra vonatkoztatni: az \setbox0\hbox{$I(t)$}% \message{//depth:\the\dp0//}% \box0% jelet először egy \setbox0\hbox{$f_0$}% \message{//depth:\the\dp0//}% \box0% középfrekvencia körüli \setbox0\hbox{$\Delta f$}% \message{//depth:\the\dp0//}% \box0% szélességű sáváteresztő szűrőn keresztül mérjük, azaz csak az adott frekvenciasávra jellemző \setbox0\hbox{$\left<(\Delta I(t|f_0,\Delta f))^2\right>$}% \message{//depth:\the\dp0//}% \box0% szórásnégyzetet mérünk. Az így kapott szórásnégyzet kis \setbox0\hbox{$\Delta f$}% \message{//depth:\the\dp0//}% \box0% esetén arányos a \setbox0\hbox{$\Delta f$}% \message{//depth:\the\dp0//}% \box0% sávszélességgel, az arányossági tényezőt pedig a zaj spektrális sűrűségének nevezzük:

\[\left<(\Delta I(t|f_0,\Delta f))^2\right>=S_I(f_0)\Delta f.\]

Áramzaj esetén az \setbox0\hbox{$S_I$}% \message{//depth:\the\dp0//}% \box0% spektrális sűrűség mértékegysége \setbox0\hbox{$A^2/Hz$}% \message{//depth:\the\dp0//}% \box0%. A mérnöki gyakorlatban gyakran a spektrális sűrűség négyzetgyökével jellemzik egy eszköz zaját \setbox0\hbox{$A/\sqrt(Hz)$}% \message{//depth:\the\dp0//}% \box0% mértékegységgel.

Az áramzajhoz hasonlóan definiálhatjuk a feszültségzajt is:
\[\left<(\Delta V(t|f_0,\Delta f))^2\right>=S_V(f_0)\Delta f.\]

Egy egyszerű ellenállás esetén \setbox0\hbox{$\Delta V=R \Delta I$}% \message{//depth:\the\dp0//}% \box0%, azaz \setbox0\hbox{$S_V=R^2 S_I$}% \message{//depth:\the\dp0//}% \box0%. Egy nemlineáris eszköznél, pl. egy diódánál \setbox0\hbox{$S_V=R_d^2 S_I$}% \message{//depth:\the\dp0//}% \box0%, ahol \setbox0\hbox{$R_d=dV/dI$}% \message{//depth:\the\dp0//}% \box0% az eszköz differenciális ellenállása a mérésnél alkalmazott munkapontban.

A fenti definíciók megismerése után érdemes megnézni a mérésnél használt Stanford research Systems 770 típusú spektrumanalizátor specificációit, melyek szerint a műszer bemeneti zaja a legkisebb méréshatárban \setbox0\hbox{$5nV/\sqrt(Hz)$}% \message{//depth:\the\dp0//}% \box0%. Ez azt jelenti, hogy a műszer bemenetét rövidre zárva a várt zérus feszülétség helyett a bemeneti erősítő feszültségzaját látjuk, melynek a szórása 5nV 1Hz-es sávszélességű mérés esetén.

A kvantált elektromos töltésből adódó "sörétzaj"

Puskagolyók zaja

A sörétzaj fogalma egy klasszikus példával is jól szemléltethető, nézzük meg hogy mi történik ha egy puskából véletlenszerűen lövöldözünk, úgy hogy a lövések időpontja egymástól teljesen független. Ha a szomszédos lövések között eltelt átlagos idő \setbox0\hbox{$\tau$}% \message{//depth:\the\dp0//}% \box0% akkor \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% idő alatt a lövések átlagos száma értelemszerűen \setbox0\hbox{$\left< N \right> =\Delta t/\tau$}% \message{//depth:\the\dp0//}% \box0%. Az átlag körüli szórás meghatározásához érdemes kiszámolni a \setbox0\hbox{$P_N(\Delta t)$}% \message{//depth:\the\dp0//}% \box0% valószínűséget, azaz annak a valószínűségét, hogy \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% idő alatt \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0% lövés dördül. Ha \setbox0\hbox{$P_N(\Delta t)$}% \message{//depth:\the\dp0//}% \box0% értékét ismerjük, akkor \setbox0\hbox{$P_N(\Delta t+dt)$}% \message{//depth:\the\dp0//}% \box0% értéke a

\[P_N(\Delta t+dt)=P_{N-1}(\Delta t)\frac{dt}{\tau}+P_N(\Delta t)\left(1-\frac{dt}{\tau}\right)\]

egyenlettel írható fel, azaz a kezdeti \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% és az utána következő \setbox0\hbox{$dt<<\tau$}% \message{//depth:\the\dp0//}% \box0% idő alatt vagy \setbox0\hbox{$N-1$}% \message{//depth:\the\dp0//}% \box0% ill. \setbox0\hbox{$1$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0% ill. \setbox0\hbox{$0$}% \message{//depth:\the\dp0//}% \box0% lövés dördül. A megfelelő valószínűségeket a lövések függetlensége miatt szorozhatjuk össze. A fenti egyenlet átrendezésével a

\[\frac{dP_N(\Delta t)}{dt}=\frac{P_{N-1}(\Delta t)-P_N(\Delta t)}{\tau}\]

differenciálegyenletet kapjuk. Megmutatható, hogy ezen feltételt a

\[P_N(\Delta t)=\frac{(\Delta t)^N}{\tau^N N!}e^{-\Delta t/\tau}\]

Poisson eloszlás elégíti ki. A Poisson elszlás speciális tulajdonsága, hogy a szórásnégyzet megegyezik a várható értékkel, azaz

\[\left< (\Delta N)^2 \right>=\left< N \right>=\frac{\Delta t}{\tau}.\]

Elektronok sörétzaja

A fenti gondolatmenetet vonatkoztathatjuk elektronokra is ha teljesül az, hogy az elektronok véletlenszerűen, egymástól függetlenül jutnak át az egyik elektródából a másikba. Tegyük fel, hogy mérőrendszerünkkel az elektromos áramot \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% időbeli felbontással tudjuk mérni. Egy \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% szélességű mintavételezési intervallum alatt \setbox0\hbox{$I=Ne/\Delta t$}% \message{//depth:\the\dp0//}% \box0% áramot detektálunk ahol a \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% idő alatt áthaladó eletronok számának (\setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0%) eloszlását a fenti Poisson eloszlás adja meg. Így a mért áram várható értéke \setbox0\hbox{$\left< I \right>=\left< N \right>e/\Delta t$}% \message{//depth:\the\dp0//}% \box0%, míg az áram szórásnégyzete \setbox0\hbox{$\left< (\Delta I)^2 \right>=\left< (\Delta N)^2 \right>e^2/(\Delta t)^2$}% \message{//depth:\the\dp0//}% \box0%. A Nyquist - Shannon mintavételezési törvény szerint \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% időfelbontás esetén a mért jelet \setbox0\hbox{$f_{max}=1/2\Delta t$}% \message{//depth:\the\dp0//}% \box0% maximális frekvenciáig tudjuk rekonstruálni. Ez alapján a mért áramzaj spektrális sűrűsége:

\[S_I=\frac{\left< (\Delta I)^2 \right>}{f_{max}}=2e\left< I \right>.\]

0-tól fmaxig fehérzaj független eletronok -> vákkum dióda, Schottky, de jó a félvezető dióda is.

egy lövés van, és az előtte eltelt \setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0% idő alatt pedig \setbox0\hbox{$N-1$}% \message{//depth:\the\dp0//}% \box0%, vagy

mely annak a valószínűségét, hogy

az egyik legalapvetőbb zajformát, az ún. termikus zajt tanulmányozzuk. A termikus zaj véges hőmérsékleten jelentkezik a különböző állapotok betöltésének termikus fluktuációi miatt. Egy fermionikus rendszerben egy állapot betöltési száma n=0,1 lehet. A betöltési szám várható értéke a Fermi függvény,
.

A betöltési szám szórás négyzete:

,

ahol kihasználtuk, hogy fermionokra n2=n. A kifejezést energia szerint kiintegrálva ( ) rögtön látszik, hogy a termikus zaj arányos a hőmérséklettel. A zaj mértékének pontos megadásához először definiálni kell a zaj mérésére használt mennyiséget. Egy zajmérés kísérleti megvalósítása a következő ábrán szemléltethető:


A mért I(t) jelből kiszűrjük az f0 frekvencia körüli f sávszélességű tartomány, és az így kapott jel szórásnégyzetét vizsgáljuk egy spektrumanalizátorral. Megfelelően keskeny frekvenciasávot alkalmazva a mért szórásnégyzet arányos lesz a frekvenciasáv szélességével, és az arányossági tényezőt nevezzük a zaj spektrális sűrűségének:

.

Megmutatható hogy a zaj spektrális sűrűsége nem más, mint a korrelációs függvény Fourier transzformáltjának a kétszerese. A zaj pontos definícióját megismerve a termikus zaj értékét a fluktuáció-disszipáció tétel alapján adhatjuk meg, mely egy rendszer egyensúlyi fluktuációi és az egyensúlyból kitérített rendszer lineáris válaszfüggvénye között teremt összefüggést. Elektromos áram esetén az ez egyensúlyi fluktuáció nem más mint az áramzaj, a lineáris válaszfüggvény pedig a külső feszültségre adott válasz, vagyis a vezetőképesség. Így egy rendszer áramzaja:

.

Így alacsony frekvencián ( ) az áramfluktuációk termikus zaja:

.

Hasonlóképpen a feszültségzaj:

Látjuk, hogy a termikus zaj segítségével "csupán" feszültségmérés alapján meghatározhatjuk egy rendszer abszolút hőmérsékletét. Persze a precíz zajmérések komoly méréstechnikai kihívást jelentenek, hiszen nanovoltos vagy még kisebb feszültségek fluktuációját kell pontosan mérni. Ennek ellenére a termikus zaj mérésének komoly metrológiai jelentősége van, hiszen számos módszerrel mérhetünk precízen hőmérsékletváltozást, de az abszolút hőmérsékletet nem könnyű meghatározni. A jelenleg érvényes hőmérsékletstandardok mind ún. másodlagos hőmérők, melyek nem alapvető fizikai törvény hanem megfelelő kalibráció alapján mérik az abszolút hőmérékletet. (A szobahőmérséklet körüli széles tartományban pl. platina vékonyréteg ellenálláshőmérőt használnak standardként.) A termikus zaj mérése alapvető fizikai állandók (Boltzmann állandó + elektron töltés) alapján vezeti vissza a hőmérsékletmérést feszültségmérésre, így a hőmérsékletstandardok kalibrálásának egyik alapvető módszere. A termikus zaj mellett még két fontos zajtípusról érdemes megemlékezni. Az egyik a szennyezők és rácshibák véletlen mozgásából adódó ún. 1/f zaj, mely alacsony frekvenciákon dominál, és a nevét is a zajsűrűség tipikus frekvenciafüggéséről kapta. A másik az elektrontöltés kvantáltságából adódó ún. sörét zaj, melynek a lényege egy egyszerű példán szemléltethető: Képzeljünk el egy elektronhullámot, mely áthalad egy T transzmissziós valószínűségű nyalábosztón. Az áthaladt töltés értéke T valószínűséggel 1 és 1-T valószínűséggel 0,így az áthaladt töltés T várható értéke körül T(1-T) szórásnégyzetű fluktuációt tapasztalunk. Ezt az elemi folyamatot több elektronra általánosítva megmutatható, hogy a sörétzaj nagysága a rendszerre kapcsolt feszültséggel arányos. A fenti példából érezhető, hogy a sörétzaj kisméretű rendszerekben válik fontossá, ahol egyszerre csak kevés elektron vesz részt a vezetésben.