„Alkalmazott szilárdtestfizika” változatai közötti eltérés

A Fizipedia wikiből
(Karakterisztikus méretskálák; nanoszerkezetek előállítási és vizsgálati technikái)
(Mágnesség)
68. sor: 68. sor:
 
Moore törvénye, az elektronikai eszközök méretcsökkenése. Elektronmikroszkópok, elektronsugár litográfia, kétdimenziós elektrongáz GaAlAs heteroszerkezetekben. Pásztázó alagútmikroszkóp és atomerő mikroszkóp. Karakterisztikus méretskálák: momentumrelaxációs szabadúthossz, fáziskoherencia-hossz, spindiffúziós hossz.
 
Moore törvénye, az elektronikai eszközök méretcsökkenése. Elektronmikroszkópok, elektronsugár litográfia, kétdimenziós elektrongáz GaAlAs heteroszerkezetekben. Pásztázó alagútmikroszkóp és atomerő mikroszkóp. Karakterisztikus méretskálák: momentumrelaxációs szabadúthossz, fáziskoherencia-hossz, spindiffúziós hossz.
  
===Mágnesség===
+
===Mezoszkopikus transzport I.===
  
Mágneses anyagok, mágneses momentumok eredete és kölcsönhatása, mágneses szerkezetek. Fémek mágnessége, spin-polarizált sávok, magnetotranszporton alapuló spintronikai eszközök (spin-szelep, MRAM). Spin-tranzisztor, mágneses félvezetők.  
+
Ideális nanovezetékek ellenállása, Landauer-formula, vezetőképesség-kvantálás.
 +
 
 +
 
 +
===Mezoszkopikus transzport II.===
 +
 
 +
Termoelektromos jelenségek, zajjelenségek.
 +
 
 +
===Mezoszkopikus transzport III.===
 +
 
 +
Koherens transzport, Aharonov-Bohm-effektus, fázisvesztés, környezet miatti koherencia-vesztés. 
 +
 
 +
===Mezoszkopikus transzport IV.===
 +
 
 +
Négypont ellenállás nanovezetékekben, ellenállások koherens és inkoherens soros kapcsolása, nemegyensúlyi eloszlásfüggvény, ballisztikus vezeték ellenállása.
 +
 
 +
===Makroszkopikus transzport I. ===
 +
 
 +
Boltzmann-egyenlet, relaxációs idő közelítés. Boltzmann-egyenlet megoldása homogén hőmérsékletgradiens, illetve homogén elektromos tér esetén.
 +
 
 +
===Makroszkopikus transzport II. ===
 +
 
 +
Egyenáramú vezetőkéesség számolása a Boltzmann-egyenlet alapján. Üres és teli sáv vezetése, izotróp rendszer vezetőképessége. Termoelektromos jelnségek. Fémek ellenállásának hőmérsékletfüggése.
  
 
===Szupravezetés===  
 
===Szupravezetés===  

A lap 2014. május 21., 11:13-kori változata

Tartalomjegyzék

Tárgy adatai

  • Tárgyfelelős: Dr. Mihály György, egyetemi tanár
  • Oktatók: Dr. Halbritter András egyetemi docens és Dr. Csonka Szabolcs egyetemi docens
  • Kód: BMETE11AF11
  • Követelmény: 2/0/0/V/2
  • Besorolás: fizika BSC alkalmazott fizika szakirányon kötelező tárgy, fizikus szakirányon a szilárdtestfizika iránt érdeklődőknek szabadon választható tárgyként ajánjuk
  • Nyelv: magyar
  • Jelenléti követelmények: A félév végi aláírás feltétele előadások legalább 70%-án való részvétel. Az előadásokon jelenléti ívet vezetünk.
  • Félévközi számonkérések: -
  • A félév végi osztályzat kialakítása szóbeli vizsga alapján történik. A vizsga feltétele az aláírás megszerzése
  • Konzultációk: egyéni egyeztetés alapján

2013/2014 tavaszi félév

  • Az előadások időpontja és helye: péntek 10:15-12:00, F. épület III. lépcsőház 2.emelet 13.
  • A tervezett időbeosztás:
  1. február 14. Bevezetés (Mihály György)
  2. február 21. Mezoszkopikus vezetési jelenségek I (Halbritter András)
  3. február 28. Mezoszkopikus vezetési jelenségek II (Halbritter András)
  4. március 7. Makroszkopikus transzport I (Halbritter András)
  5. március 14. Makroszkopikus transzport II (Halbritter András)
  6. március 21. Félvezetők (Csonka Szabolcs)
  7. március 28. Félvezető alkalmazások (Csonka Szabolcs)
  8. április 4. Félvezető nanoszerkezetek (Csonka Szabolcs)
  9. április 11. Mágnesség (Csonka Szabolcs)
  10. április 18. Mágneses modellek (Csonka Szabolcs)
  11. április 25. Ferromágneses anyagok, spintronika (Csonka Szabolcs)
  12. május 9. Szupravezető anyagok (Halbritter András)
  13. május 16. Kvantum-effektusok szupravezetőkben, alkalmazások (Halbritter András)

Az előadások fóliái

(jelszó az előadóktól kérhető)

Tematika

Karakterisztikus méretskálák; nanoszerkezetek előállítási és vizsgálati technikái

Moore törvénye, az elektronikai eszközök méretcsökkenése. Elektronmikroszkópok, elektronsugár litográfia, kétdimenziós elektrongáz GaAlAs heteroszerkezetekben. Pásztázó alagútmikroszkóp és atomerő mikroszkóp. Karakterisztikus méretskálák: momentumrelaxációs szabadúthossz, fáziskoherencia-hossz, spindiffúziós hossz.

Mezoszkopikus transzport I.

Ideális nanovezetékek ellenállása, Landauer-formula, vezetőképesség-kvantálás.


Mezoszkopikus transzport II.

Termoelektromos jelenségek, zajjelenségek.

Mezoszkopikus transzport III.

Koherens transzport, Aharonov-Bohm-effektus, fázisvesztés, környezet miatti koherencia-vesztés.

Mezoszkopikus transzport IV.

Négypont ellenállás nanovezetékekben, ellenállások koherens és inkoherens soros kapcsolása, nemegyensúlyi eloszlásfüggvény, ballisztikus vezeték ellenállása.

Makroszkopikus transzport I.

Boltzmann-egyenlet, relaxációs idő közelítés. Boltzmann-egyenlet megoldása homogén hőmérsékletgradiens, illetve homogén elektromos tér esetén.

Makroszkopikus transzport II.

Egyenáramú vezetőkéesség számolása a Boltzmann-egyenlet alapján. Üres és teli sáv vezetése, izotróp rendszer vezetőképessége. Termoelektromos jelnségek. Fémek ellenállásának hőmérsékletfüggése.

Szupravezetés

Szupravezetés jelensége, első és másodfajú szupravezetők. Szupravezető anyagok, magas hőmérsékleti szupravezetők. Szupravezetők alkalmazásai (mágnesek, SQUID).

IRODALOM

  • Az általános szilárdtestfizika témájú előadások mélyebb megértéséhez Sólyom Jenő A modern szilárdtestfizika alapjai c. könyvének második kötetét ajánljuk.
  • A nanofizika témájú előadásokhoz (mezoszkopikus transzport, félvezető nanoszerkezetek, spintronika) elektronikus oktatási anyagok találhatók a nanofizika tudásbázisban