„Electron transport in nanowires: Landauer formula, conductance quantization” változatai közötti eltérés

A Fizipedia wikiből
(Characteristic length scales)
 
(egy szerkesztő 8 közbeeső változata nincs mutatva)
9. sor: 9. sor:
 
$$\vec{j}=n\cdot e\cdot v_\mathrm{drift}\ \ \ \rightarrow \ \ \ \sigma=\frac{ne^2\tau_\text{m}}{m}.$$
 
$$\vec{j}=n\cdot e\cdot v_\mathrm{drift}\ \ \ \rightarrow \ \ \ \sigma=\frac{ne^2\tau_\text{m}}{m}.$$
  
Between two scattering events -- in time $\tau_{\text{m}}$ -- electrons travel a distance $l_{\text{m}} = v_\text{F} \cdot \tau_\text{m}$, where $v_{\text{F}}$ is the Fermi velocity. This distance is called the momentum relaxation length. The Drude model loses its meaning if the characteristic size ($L$) of the wire in question is less than the momentum relaxation length characterizing the scale of the scatterings. Based on this we can differentiate between diffusive and ballistic wires. In the diffusive case ($L > l_{\text{m}}$) the electrons scatter many times before they get from one electrode into the other (figure 1/a), while in the ballistic case ($L<l_{\text{m}}$) the electrons scatter don't scatter inside the wire, only on its walls (figure 1/b).
+
Between two scattering events -- in time $\tau_{\text{m}}$ -- electrons travel a distance $l_{\text{m}} = v_\text{F} \cdot \tau_\text{m}$, where $v_{\text{F}}$ is the Fermi velocity. This distance is called the momentum relaxation length. The Drude model loses its meaning if the characteristic size ($L$) of the wire in question is less than the momentum relaxation length characterizing the scale of the scatterings. Based on this we can differentiate between diffusive and ballistic wires. In the diffusive case ($L > l_{\text{m}}$) the electrons scatter many times before they get from one electrode into the other (figure 1/a.), while in the ballistic case ($L<l_{\text{m}}$) the electrons scatter don't scatter inside the wire, only on its walls (figure 1/b.).
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
27. sor: 27. sor:
  
 
Further interesting phenomena occur if the cross-section of the wire becomes comparable to the Fermi wavelength of electrons: $L \sim \lambda_{\text{F}}$. We explain this below.
 
Further interesting phenomena occur if the cross-section of the wire becomes comparable to the Fermi wavelength of electrons: $L \sim \lambda_{\text{F}}$. We explain this below.
 
+
</wlatex>
== Kvantumvezeték ellenállása ==
+
== Resistance of quantum wires ==
 
<wlatex>
 
<wlatex>
Az elektronok hullámhosszával összemérhető vezetékek tulajdonságait vizsgáljuk meg egy egyszerű modellel: két elektrontartályt kössünk össze egy kétdimenziós, párhuzamos falú ''ideális kvantumvezetékkel'', melyben az elektronok szóródás nélkül haladnak (2. ábra).  
+
Let’s consider the properties of nanowires comparable with the wavelength of electrons using a simple model: we connect two electron reservoirs with a 2-dimensional ''ideal quantum wire'' with parallel walls, in which the electrons travel without scattering (figure 2.).
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
36. sor: 36. sor:
 
| align="center"|[[Fájl:Qwire.png|közép|300px]]
 
| align="center"|[[Fájl:Qwire.png|közép|300px]]
 
|-
 
|-
| align="center"|2. ábra. ''Ideális kvantumvezeték''
+
| align="center"|Figure 2. ''Ideal quantum wire''
 
|}
 
|}
  
''Hard wall'' határfeltételt alkalmazva (azaz a bezáró potenciál a vezetéken belül ill. kívül zérus ill. végtelen) egyszerűen felírható az elektronok hullámfüggvénye:
+
Using ''hard wall'' boundary condition (i.e. the enclosing potential is zero inside and infinite outside of the wire) the wavefunction of the electrons:
 +
 
 
$$\Psi_{n,k}(x,y)=e^{ikx}\cdot \sin\left(\frac{n \pi y}{W} \right),$$
 
$$\Psi_{n,k}(x,y)=e^{ikx}\cdot \sin\left(\frac{n \pi y}{W} \right),$$
azaz hosszirányban ($x$) síkhullám terjedést, keresztirányban pedig kvantált állóhullámokat kapunk. Ennek megfelelően az elektronok energiája:
+
 
 +
that is, in the longitudinal direction we get plane wave propagation, while in the transversal direction standing waves. According to this the energy of the electrons:
 
$$\varepsilon_n(k)=\frac{\hbar^2k^2}{2 m} + \frac{\pi^2 \hbar^2}{2 m W^2}\cdot n^2,$$
 
$$\varepsilon_n(k)=\frac{\hbar^2k^2}{2 m} + \frac{\pi^2 \hbar^2}{2 m W^2}\cdot n^2,$$
ahol $k$ az $x$-irányú síkhullám terjedéshez tartozó hullámszám, $n$ pedig a kvantált keresztmódust ($y$-irányú állóhullámot) jellemzi. Az energiakifejezés a 3/a. ábrán szemléltetett, egymáshoz képest a keresztirányú energiák szerint eltolt egydimenziós diszperziós relációknak felel meg. Értelemszerűen csak azon módusokon (ún. ''vezetési csatornákon'') keresztül folyhat áram, melyekhez tartozó keresztirányú energia kisebb az elektródák Fermi-energiájánál, azaz a diszperziós reláció metszi a Fermi-szintet. Ezen feltételnek megfelelő módusokat nyitott vezetési csatornának nevezzük, a nyitott csatornák számát $M$-mel jelöljük.  
+
 
 +
where $k$ is the wavenumber belonging to the plane wave propagation along the $x$-direction and $n$ describes the quantised transverse modes (standing waves along the $y$-direction). This expression for the energy corresponds to the one-dimensional energy dispersion relation offset by the transverse mode energies as depicted in the figure. Reasonably, current can only flow through those modes (the so-called conduction channels) that have transverse mode energies smaller than the Fermi energy of the electrodes that is, the dispersion relation intersects with the Fermi level. The modes that satisfy this criterion, are called open conduction channels and the number of open conduction channel is denoted by $M$.
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
50. sor: 53. sor:
 
| align="center"|[[Fájl:disp_Biased.png|közép|350px|]]
 
| align="center"|[[Fájl:disp_Biased.png|közép|350px|]]
 
|-
 
|-
| align="center"|3/a. ábra. ''Diszperzós reláció ideális kvantumvezetékben''
+
| align="center"|Figure 3/a. ''Dispersion relation in an ideal quantum wire''
| align="center"|3/b. ábra. ''Diszperzós reláció a mintára feszültséget kapcsolva''
+
| align="center"|Figure 3/b. ''Dispersion relation when a bias is applied to the sample''
 
|}
 
|}
  
 +
If we turn on $V$ bias between the two electron reservoirs, the electron states of the nanowire will be filled as represented in figure 3/b. The states with positive $k$ values originate from the left electrode, so these are filled to energies $eV$ higher than the states coming from the right electrode with negative $k$ values. Only the states with positive $k$ and in the region between chemical potentials $\mu_1$ and $\mu_2$ contribute to the current transport, as below the $\mu_2$ chemical potential both the positive and negative propagating states are filled, so the total current becomes zero.
  
Ha a két elektrontartály közé $V$ feszültséget kapcsolunk akkor a nanovezeték elektronállapotai a 3/b. ábrán szemléltetett módon töltődnek be: a pozitív $k$-val rendelkező állapotok mind a bal oldali elektródából származnak, így ezek $eV$-vel magasabb energiáig vannak betöltve mint a jobb oldali elektródából származó, negatív $k$-val rendelkező állapotok. Áramot csak a $\mu_1$ ás $\mu_2$ kémiai potenciál közötti tartományban levő pozitív $k$-jú állapotok szállítanak, hiszen $\mu_2$ kémiai potenciál alatt a pozitív és negatív irányba haladó állapotok egyaránt betöltöttek, így eredő áramuk zérus lesz.
+
For a given conduction channel the velocity of the electrons and the density of states are as follows:
 
+
Egy adott vezetési csatornára az elektronok sebességét, illetve az állapotsűrűséget a következőképpen írhatjuk:
+
 
$$v_n=\frac{1}{\hbar}\frac{\partial \varepsilon_n(k)}{\partial k},\ \ \ \ g_n=\frac{L}{2\pi}\left(\frac{\partial \varepsilon_n(k)}{\partial k}\right)^{-1}.$$  
 
$$v_n=\frac{1}{\hbar}\frac{\partial \varepsilon_n(k)}{\partial k},\ \ \ \ g_n=\frac{L}{2\pi}\left(\frac{\partial \varepsilon_n(k)}{\partial k}\right)^{-1}.$$  
Az $eV$ energiasávban található elektronok sűrűségét $n_n=eV\cdot g_n/L$ képlettel számolhatjuk. A vezetékben folyó áram számolásához az elektrontöltés, a sebesség és az elektronsűrűség szorzatát kell képezni, illetve ezt összegezni a különböző vezetési csatornákra:
+
The electron density in the $eV$ range is calculated as:  $n_n=eV\cdot g_n/L$. To calculate the total current flowing through the wire we multiply the electron charge, the velocity and the electron density then sum these up for the individual conduction channels:
 +
 
 
$$I=2\sum_{n=1}^{M}e v_n n_n =\frac{2e^2}{h}MV,$$
 
$$I=2\sum_{n=1}^{M}e v_n n_n =\frac{2e^2}{h}MV,$$
ahol a kettes szorzó a spin szerinti degenerációnak felel meg. Mivel a sebesség és az elektronsűrűség szorzatában az energiadiszperzió deriváltja kiesik, a kvantumvezeték vezetőképessége egyszerűen a $G_0=2e^2/h$ ''vezetőképesség-kvantum'' egész számú többszörösének adódik. Érdemes megjegyezni, hogy a hosszirányú transzláció-invariancia miatt az $x$ irányú impulzus megmarad,
 
így az egyes csatornák között nem történhet átszóródás, mert az a $k$ hullámszám megváltozásával járna, azaz a vezetési csatornák áramjárulékát valóban tekinthetjük egymástól függetlennek.
 
  
A fenti számolásban abból indultunk ki, hogy csak az elektródák kémiai potenciálja alatt találunk betöltött állapotokat, azaz zérus hőmérsékletet tételezünk fel. Véges hőmérsékleten a kémiai potenciál $kT$ szélességű környezetében egyaránt találhatók betöltött és betöltetlen állapotok, az állapotok betöltöttségének valószínűségét a Fermi-függvény írja le:
+
where the multiplier 2 corresponds to the spin degeneracy. Since the derivative of the energy dispersion in the product of the velocity and the electron density cancels, the conductance of the quantum wire is simply the integer multiple of the ''conductance quantum'' $G_0=2e^2/h$. It’s worth to note that momentum is conserved in the $x$-direction due to the longitudinal translation invariance, which prohibits the scattering between conduction channels, as it would change the wavenumber $k$ so we really can treat the current contribution of the individual conduction channels independently.
$$f(\varepsilon)=\frac{1}{e^{\frac{\varepsilon -\mu}{kT}}+1}.$$
+
 
Az kvantumvezeték belsejében a $k>0$, bal oldali elektródából származó elektronállapotok betöltöttségét az 1-es elektróda $f_l(\varepsilon)$ betöltési szám függvénye írja le, míg a $k<0$ állapotok a 2-es elektróda $f_2(\varepsilon)$ betöltési szám függvényével jellemezhetők, ahol $f_1$ és $f_2$ egymáshoz képest $eV$ energiával eltolt Fermi-függvények. Ez a leírás egyben az elektrontartályok tökéletességét is feltételezi, azaz a kvantumvezetékből az egyik elektródába érkező elektronok csak ''termalizálódás'' után szóródhatnak vissza a kvantumvezetékbe, így az elektródát elhagyó elektronok valóban az elektróda Fermi-függvénye szerinti energiaeloszlást követik.  
+
The above calculation was derived from the assumption that occupied states are only to be found below the chemical potential $\mu$ of the electrodes that is, the temperature is zero. At finite temperature, we can find both occupied and unoccupied states in the $k_{\text{B}}T$ wide range around the chemical potential. The possibility of a state being occupied is described by the Fermi function:
A fentiek alapján véges hőmérsékleten a vezetékben pozitív illetve negatív irányba folyó áramot az
+
 
 +
$$f(\varepsilon)=\frac{1}{e^{\frac{\varepsilon -\mu}{k_{\text{B}}T}}+1}.$$
 +
 
 +
Inside the quantum wire the electron states originating from the left electrode ($k > 0$) are occupied according to $f_1$, the occupation number function of electrode 1, while the electron states from the right electrode ($k<0$) according to $f_2$ the occupation number function of electrode 2. Here $f_1$ and $f_2$ are Fermi functions offset with energy $eV$ relative to each other. This description also presumes the electron reservoirs to be perfect: the electrons that enter the electrode from the quantum wire can scatter back into the quantum wire only after thermalisation, so the electrons leaving the electrode truly follow the energy distribution that corresponds to the Fermi function of the given electrode.
 +
As a consequence of the arguments above, the current flowing in the wire at finite temperature into the positive and the negative direction respectively:
 +
 
$$I^+=\frac{2 e}{L} \sum \limits_{k>0} v_k f_1(\varepsilon_k) = 2e \int \frac{\mathrm{d}k}{2 \pi}\frac{\partial \varepsilon_k}{\hbar \partial k} f_1(\varepsilon_k) = \frac{2 e}{h}\int \mathrm{d} \varepsilon f_1(\varepsilon),$$
 
$$I^+=\frac{2 e}{L} \sum \limits_{k>0} v_k f_1(\varepsilon_k) = 2e \int \frac{\mathrm{d}k}{2 \pi}\frac{\partial \varepsilon_k}{\hbar \partial k} f_1(\varepsilon_k) = \frac{2 e}{h}\int \mathrm{d} \varepsilon f_1(\varepsilon),$$
$$I^-=\frac{2 e}{L} \sum \limits_{k<0} v_k f_2(\varepsilon_k) = \frac{2 e}{h}\int \mathrm{d} \varepsilon f_2(\varepsilon)$$
+
 
képletek írják le, azaz az eredő áram:
+
$$I^-=\frac{2 e}{L} \sum \limits_{k<0} v_k f_2(\varepsilon_k) = \frac{2 e}{h}\int \mathrm{d} \varepsilon f_2(\varepsilon),$$
 +
 
 +
i.e. the total current is:
 
$$I=I^+-I^-=\frac{2 e}{h} \int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))=\frac{2 e}{h}e V.$$
 
$$I=I^+-I^-=\frac{2 e}{h} \int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))=\frac{2 e}{h}e V.$$
Mivel $\int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))$ integrál tetszőleges hőmérsékleten $eV$-vel egyenlő, így egy egycsatornás ideális kvantumvezeték ellenállása tetszőleges hőmérsékleten a $G_0=2 e^2/h$ ''vezetőképesség-kvantum'', ami $\approx 12900\,\Omega$ ellenállásnak felel meg.
+
 
 +
The integral $\int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))$ equals eV at any finite temperature, which infers the conductance of a single-channel ideal quantum wire to be the conductance quantum, $G_0$ at arbitrary temperature, which corresponds to a resistance of $12900\;\Omega$.
 
</wlatex>
 
</wlatex>
  
== Landauer-formula ==
+
== Landauer formalism ==
 
<wlatex>
 
<wlatex>
Most tekintsük azt az egyszerű modellt, amikor egy egycsatornás, ideális kvantumvezeték közepén egy szórócentrum található, melyen $\mathcal{T}$ valószínűséggel jutnak át az elektronok. Ebben az esetben az elektródák felől a szórócentrum felé haladó állapotok továbbra is a megfelelő elektródából származnak, és ennek az eloszlásfüggvényét követik (lásd a 4. ábrán a $\mathrm{d}I_1^+$ és $\mathrm{d}I_2^-$ áramkomponenseket). A szórócentrumtól az elektródák felé haladó állapotok viszont kevertek, pl. a $\mathrm{d}I_1^-$ áramjáruléknál egyaránt figyelembe kell venni az 1-es elektródából induló és a szórócentrumon reflektálódó, illetve a 2-es elektródából induló és a szórócentrumon transzmittálódó elektronokat.
+
Let’s examine the simple model of a single-channel ideal quantum wire with a scattering centre in the middle, which transmits electrons with probability $\mathcal{T}$. In this case, the states travelling from the electrodes in the direction of the scattering region still originate from the corresponding electrode and adhere to its distribution function (see current contributions $\mathrm{d}I_1^+$ and $\mathrm{d}I_2^-$ in figure 4). On the other hand, the states travelling from the scattering region towards the electrodes are mixed, e.g. in case of the $\mathrm{d}I_1^-$ current contribution both the states backscattered from the scattering region originating from electrode 1 and the states coming from electrode 2 then transmitted by the scattering region.
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
83. sor: 92. sor:
 
| align="center"|[[Fájl:Qwire2.png|közép|300px]]
 
| align="center"|[[Fájl:Qwire2.png|közép|300px]]
 
|-
 
|-
| align="center"|4. ábra. ''Egycsatornás kvantumvezeték $\mathcal{T}$ átmeneti valószínűségű szórócentrummal''
+
| align="center"|Figure 4. ''Single-channel quantum wire with scattering centre with transmission probability $\mathcal{T}$''
 
|}
 
|}
  
Zérus hőmérsékleten csak a $\mu_2$ kémiai potenciál alatti állapotok származhatnak mindkét elektródából, azonban az $\varepsilon<\mu_2$ állapotok teljes árama értelemszerűen zérust ad, hiszen ez annak felel meg, mintha zérus feszültséget kapcsoltunk volna a rendszerre. Így a véges áramért továbbra is $\mu_2 <\varepsilon< \mu_1$ állapotok felelnek, melyek csak az 1-es elektródából származhatnak. Így a teljes áram könnyen számolható például a szórócentrum és a 2-es elektróda közötti vezetékdarabban. Itt a $\mu_2 <\varepsilon< \mu_1$
+
At zero temperature only the states below the $\mu_2$ chemical potential can come from both of the electrodes, but the total current of the states with $\varepsilon < \mu_2$ equals to zero because it corresponds to the case where the bias applied to the system is zero. Thus the states with energy $\mu_2 < \varepsilon < \mu_1$ account for the finite current, which can originate only from electrode 1. So the total current can easily be calculated in the lead section between the scattering centre and electrode 2. Here the electrons in the energy band $\mu_2 < \varepsilon < \mu_1$ would give $I=(2e^2/h)\cdot V$ current for $T=1$, which would scale with the number of the transmitted electrons for $T < 1$: $I=(2e^2/h)\cdot \mathcal{T} \cdot V$. So the conductance of a single-channel nanowire with a scattering centre in the middle which has transmission probability $T$:
energiasávban levő elektronok $\mathcal{T} =1$ esetén a korábbiak alapján $I=(2e^2/h)\cdot V$ áramot adnának, ami $\mathcal{T} <1$ esetén értelemszerűen a transzmittálódó elektronok hányadával skálázódik, azaz  $I=(2e^2/h)\cdot \mathcal{T} \cdot V$. Így egy egycsatornás, $\mathcal{T}$ transzmisszós valószínűségű szórócentrumot tartalmazó nanovezeték vezetőképessége:
+
$$G=\frac{2e^2}{h}\mathcal{T}.$$
$$G=\frac{2e^2}{h}\mathcal{T} .$$
+
 
 +
Let’s check whether this solution is valid for finite temperatures. The current components $\mathrm{d}I_1^+$ and $\mathrm{d}I_2^-$ originate solely from electrode 1 or 2, thus their current contributions in the energy range $\mathrm{d}\varepsilon$:
  
Vizsgáljuk meg, hogy ez az eredmény érvényes-e véges hőmérsékleten is. A $\mathrm{d}I_1^+$ és $\mathrm{d}I_2^-$ áramkomponensek kizárólag az 1-es illetve a 2-es elektródából származnak, így a korábbiak alapján egy $\mathrm{d}\varepsilon$ energiatartományban az áramjárulékuk:
 
 
$$\mathrm{d}I_1^+(\varepsilon)=\frac{2 e}{h}\cdot f_1(\varepsilon)\mathrm{d}\varepsilon,\;\; \mathrm{d}I_2^-(\varepsilon)=\frac{2 e}{h}\cdot f_2(\varepsilon)\mathrm{d}\varepsilon.$$
 
$$\mathrm{d}I_1^+(\varepsilon)=\frac{2 e}{h}\cdot f_1(\varepsilon)\mathrm{d}\varepsilon,\;\; \mathrm{d}I_2^-(\varepsilon)=\frac{2 e}{h}\cdot f_2(\varepsilon)\mathrm{d}\varepsilon.$$
Ha az áramot a szórócentrum és az 1-es elektróda közötti vezetékdarabon akarjuk kiértékelni, akkor szükségünk van a $\mathrm{d}I_1^-$ áramjárulékra is, mely $\mathcal{T}$ valószínűséggel a 2-es elektródából bejövő módus transzmissziójából, $\mathcal{R}=1-\mathcal{T}$ valószínűséggel pedig pedig a az 1-es elektródából bejövő módus reflexiójából származik:
+
 
 +
If we want to calculate the current in the lead section between the scattering centre and lead 1, then we also need the current component $\mathrm{d}I_1^-$, which originates with probability $T$ from the transmission of the mode coming from electrode 2, or with probability $R=1-T$ from the reflection of the mode coming from electrode 1:
 +
 
 
$$\mathrm{d}I_1^-(\varepsilon)=\mathrm{d}I_1^+(\varepsilon)\cdot (1-\mathcal{T}) + \mathrm{d}I_2^-(\varepsilon)\cdot \mathcal{T},$$
 
$$\mathrm{d}I_1^-(\varepsilon)=\mathrm{d}I_1^+(\varepsilon)\cdot (1-\mathcal{T}) + \mathrm{d}I_2^-(\varepsilon)\cdot \mathcal{T},$$
így a negatív és pozitív irányba haladó áramkomponensek együttes járuléka:
+
 
 +
so the combined contributions of the currents flowing into the negative and positive directions:
 
$$\mathrm{d}I_1=\mathrm{d}I_1^+ - \mathrm{d}I_1^- = \frac{2 e}{h} \cdot \mathcal{T} \cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\epsilon.$$
 
$$\mathrm{d}I_1=\mathrm{d}I_1^+ - \mathrm{d}I_1^- = \frac{2 e}{h} \cdot \mathcal{T} \cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\epsilon.$$
A teljes áramot integrálással kapjuk meg:  
+
 
 +
We obtain the total current by integration:  
 
$$I=\frac{2 e}{h} \cdot \int \mathcal{T}\cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\varepsilon.$$
 
$$I=\frac{2 e}{h} \cdot \int \mathcal{T}\cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\varepsilon.$$
A két Fermi-függvény különbsége a $\mu_1$ és $\mu_2$ kémiai potenciálok közötti energiatartományban, illetve a két kémiai potenciál körüli $kT$ energiatartományban különbözik zérustól. Feltételezve hogy ebben a tartományban a $\mathcal{T}$ transzmisszós valószínűség energiafüggetlen, és kihasználva a $\int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))=eV$ azonosságot a vezetőképességre véges hőmérsékleten is a
+
 
 +
The difference of the two Fermi functions differs from zero only in the energy range between the chemical potentials $\mu_1$ and $\mu_2$ and the $k_\text{B}T$ wide vicinity of the chemical potentials. Assuming that the transmission probability $T$ is energy independent, and utilizing the equation $\int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))=eV$, we get
 +
 
 
$$G=\frac{2 e^2}{h}\cdot \mathcal{T}$$
 
$$G=\frac{2 e^2}{h}\cdot \mathcal{T}$$
eredményt kapjuk. Ha a transzmissziós valószínűség nem tekinthető energiafüggetlennek, akkor $\mathcal{T}$-t a releváns energiatartományra vett átlagos transzmissziós valószínűségnek kell tekinteni.
+
 
 +
 
 +
for the conductance even for finite temperatures. If the transmission probability cannot be treated energy independently, then $T$ has to be considered as the average transmission probability in the relevant energy range.
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
106. sor: 123. sor:
 
| align="center"|[[Fájl:Transzmisszios_matrix_2.png|közép|250px]]
 
| align="center"|[[Fájl:Transzmisszios_matrix_2.png|közép|250px]]
 
|-
 
|-
| align="center"|5. ábra. ''Többcsatornás kvantumvezeték leírása $\hat{t}$ transzmissziós mátrixszal''
+
| align="center"|Figure 5. ''Description of a multi-channel quantum wire with transmission matrix $\hat{t}$''
 
|}
 
|}
  
Több vezetési csatorna esetén a szórócentrum hatását egy komplex transzmissziós mátrixszal ($\hat{t}$) írhatjuk le, mely a bal oldalon az egyes csatornákban bejövő, azaz az elektródától a szórócentrum felé haladó illetve a jobb oldalon kimenő, azaz a szórócentrumtól az elektróda felé haladó módusok között teremt kapcsolatot:
+
In case of more conduction channels the effect of the scattering centre can be described by the complex transmission matrix ($\hat{t}$) (see figure 5.) which connects the incoming modes into the individual channels on the left side propagating from the electrode towards the scattering centre (in figure 5 denoted by $\left| \mathrm{be} \right>_1$) and the outgoing modes on the right side propagating from the scattering region in the direction of the electrode ($\left| \mathrm{ki} \right>_2$ in the figure):
$$\left| \mathrm{ki} \right>_2=\hat{t} \left| \mathrm{be} \right>_1.$$
+
  
Megmutatható, hogy a vezetőképesség ebben az esetben
+
$$\left|  \mathrm{out} \right>_2=\hat{t} \left| \mathrm{in} \right>_1.$$
$$G = \frac{2 e^2}{h} \mathrm{Tr}(\hat{t}^\dagger \hat{t})$$
+
 
formában írható. A $\mathrm{Tr}(\hat{t}^\dagger \hat{t})$ kifejezést átírhatjuk $\sum_{i,j} t_{j,i}^* \cdot t_{j,i} = \sum_{i,j} \mathcal{T}_{j,i}$ formában, ahol $\mathcal{T}_{j,i}=|t_{j,i}|^2$ a bal oldali i-edik  csatornából a jobb oldali j-edik vezetési csatornába történő átszórás valószínűségét adja meg. Ennek megfelelően a vezetőképesség
+
One can show that the conductance then is written as:
$$G = \frac{2 e^2}{h} \sum \limits_{i,j} \mathcal{T}_{j,i}$$
+
 
formában írható.  Megfelelő bázisban a probléma diagonalizálható, azaz elérhető hogy a jobb oldali i-edik csatornából csak a bal oldali i-edik csatornába tudjanak szóródni elektronok. Ekkor a rendszer a nyitott vezetési csatornák számának megfelelő $N$ db. egymástól független egydimenziós vezetéknek tekinthető, melyek vezetőképesség-járulékát egyszerűen összegezhetjük:  
+
$$G = \frac{2 e^2}{h} \mathrm{Tr}(\hat{t}^\dagger \hat{t}).$$
 +
 
 +
One can rewrite $\mathrm{Tr}(\hat{t}^\dagger \hat{t})$ as $\sum_{i,j} t_{j,i}^* \cdot t_{j,i} = \sum_{i,j} \mathcal{T}_{j,i}$, where $\mathcal{T}_{j,i}=|t_{j,i}|^2$ gives the probability of scattering from channel $i$ on the left side into channel $j$ on the right side. Thus the conductance:
 +
 
 +
$$G = \frac{2 e^2}{h} \sum \limits_{i,j} \mathcal{T}_{j,i}.$$
 +
 
 +
Choosing a proper basis one can diagonalise the problem, this way restricting electrons to scatter from channel $i$ on the left side solely into channel $i$ on the right side. One can then consider the system to consist of N – corresponding to the number of open conduction channels – independent one-dimensional wire and simply sum up their conductance contribution:
 +
 
$$G = \frac{2 e^2}{h} \sum \limits_{i=1..N} \mathcal{T}_i.$$
 
$$G = \frac{2 e^2}{h} \sum \limits_{i=1..N} \mathcal{T}_i.$$
A $\hat{t}^\dagger \hat{t}$ operátor sajátértékeinek megfelelő $\mathcal{T}_i$ transzmissziós együtthatók az i-edik ''sajátcsatorna'' transzmissziós valószínűségét adják meg.
+
 
 +
The $\mathcal{T}_i$ transmission coefficients corresponding to the eigenvalues of the operator $\hat{t}^\dagger \hat{t}$ give us the transmission probability of the $i$th ''eigenchannel''.
 +
 
 
</wlatex>
 
</wlatex>
  
== Vezetőképesség-kvantálás kvantum-pontkontaktusban==
+
== Conductance quantisation in a quantum point contact==
 
<wlatex>
 
<wlatex>
Vegyünk egy olyan kétdimenziós kvantumvezetéket, melyben nincsenek szórócentrumok, a vezeték $W$ szélessége pedig lassan (adiabatikusan) változik a hossztengely mentén (6. ábra alsó panel). A lassan változó szélességnek köszönhetően a vezeték lokálisan mindenütt jól közelíthető egy párhuzamos falú vezetékdarabbal, és a hullámfüggvények leírhatók az adott szélességhez tartozó keresztirányú állóhullámokkal, illetve hosszirányú síkhullám terjedéssel. A 6. ábra felső panele a keresztirányú állóhullámokhoz tartozó energiát ábrázolja a vezeték mentén különböző vezetési csatornákra. Egyértelmű, hogy azon vezetési csatornák tudnak csak átjutni a vezetéken (ú.n. ''kvantum-pontkontaktuson''), melyek keresztirányú energiája a vezeték legkisebb keresztmetszeténél is a Fermi-energia alatt van.
+
Now examine a 2-dimensional quantum wire without scattering centres, and let its width decrease slowly (adiabatically) along the longitudinal axis. Thanks to the slowly changing width, the wire approximately consists of parallel-walled wire sections, and the transversal standing waves along with the longitudinal propagating plane waves corresponding to the width of the wire describe the wavefunction. In the upper panel of figure 6 depicts the energy of the transverse modes along the wire for each conduction channel. Obviously, only the channels that have an energy lower than the Fermi energy even in the narrowest portion can get through the wire (the so-called ''quantum point contact'')
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
129. sor: 154. sor:
 
| align="center"|[[Fájl:PointContact2.png|közép|500px]]
 
| align="center"|[[Fájl:PointContact2.png|közép|500px]]
 
|-
 
|-
| align="center"|6. ábra. ''Keresztirányú energiák egy adiabatikus kvantum-pontkontaktusban''
+
| align="center"|Figure 6. ''Transverse mode energies in an adiabatic quantum point contact''
 
|}
 
|}
  
A 7. ábra a vezetékben kialakuló diszperziós relációkat mutatja a vezeték két közeli tartományában. A jobb oldali panel egy kicsit keskenyebb vezetékszakaszhoz tartozik mint a bal oldali, így a nagyobb keresztirányú energia miatt a parabolikus diszperziók felfele tolódnak. Mivel a vezeték lokálisan közel transzlációinvariáns, így a hosszirányú impulzus és a $k$ hullámszám csak keveset változhat miközben az elektron egy adott tartományból eljut egy másik, közeli tartományba. Egy adott vezetési csatornában $k$ hullámszámmal rendelkező állapot a vezeték keskenyedése során csak úgy tud mindig kis impulzusváltozással előre haladni, ha ugyanabban a vezetési csatornában marad (lásd zöld nyíl). Más csatornába történő átszóródás, illetve visszaszóródás esetén $k$ jelentősen változna. Kicsit más a helyzet, ha az előrehaladás után az adott csatorna diszperziós relációjának alja a Fermi-energia fölé kerül, azaz az elektron nem tud továbbhaladni. Ebben az esetben az a legkisebb impulzusváltozással járó folyamat, ha nullához közeli de pozitív bejövő $k$-val rendelkező elektron ugyanazon csatorna $-k$ állapotába szóródik vissza (piros nyíl).
+
Figure 7 shows the dispersion relations in two points inside the wire near to each other. The right one belongs to a somewhat narrower section of the wire, thus the parabolic dispersions are shifted slightly up due to the higher transverse mode energy. As the wire is practically translation invariant, the longitudinal momentum and the $k$ wavenumber can only change a little while an electron travels from a given portion to another one near. A state in a given channel with wavenumber $k$ can only travel forward with small momentum change inside a wire with decreasing width if it remains in the same conduction channel (see green arrow on figure 7). On the other hand, scattering into another channel or backscattering would change the wavenumber $k$ significantly. The situation is different if the dispersion relation of the given channel gets shifted up during the propagation so that it does not cross the Fermi level anymore, prohibiting the electron to go further. In this case, the process that causes the least change in the momentum is that the state with nearly zero but positive $k$ scatters back into the state with wavenumber $-k$ of the same channel (see red arrow on figure 7).
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
138. sor: 163. sor:
 
| align="center"|[[Fájl:Adiabatic2.png|közép|800px]]
 
| align="center"|[[Fájl:Adiabatic2.png|közép|800px]]
 
|-
 
|-
| align="center"|7. ábra. ''Adiabatikus kvantumvezetékben az elektronok a saját vezetési csatornájukban haladnak előre, illetve ha a csatorna bezáródik, akkor visszaszóródnak''
+
| align="center"|Figure 7. ''In an adiabatic quantumwire electrons propagate forward in their own conduction channel as long as it is open (green arrow). If the channel closes, the electrons are scattered back (red arrow).''
 
|}
 
|}
  
A fenti érvek alapján elmondható, hogy egy lassan változó szélességű kvantum-pontkontaktusban az összes olyan csatorna, melyhez tartozó keresztirányú energia a legkisebb keresztmetszetben is a Fermi-energia alatt van, $\mathcal{T}=1$ valószínűséggel transzmittálódik (lásd zöld görbék a 6. ábrán), az összes többi csatorna pedig $\mathcal{R}=1$ valószínűséggel reflektálódik (piros görbék a 6. ábrán), azaz a vezetőképesség a vezetőképesség-kvantum egész számú többszöröse:
+
Based on the findings above, all the channels that have energy below the Fermi level even in the narrowest part of the quantum point contact with slowly changing width get transmitted with probability $\mathcal{T}=1$ (see green curves in figure 6), while all other channels get reflected with probability $\mathcal{R}=1$ (red curves in figure 6). Consequently, the conductance is an integer multiple of the conductance quantum:
 +
 
 
$$G=\frac{2e^2}{h}M,$$
 
$$G=\frac{2e^2}{h}M,$$
ahol $M$ a legkisebb keresztmetszetben ''elférő'' keresztirányú módusok száma.
 
  
Ez a jelenség kísérletekben is megfigyelhető, elsőként van Wees és szerzőtársai,<sup>[http://link.aps.org/doi/10.1103/PhysRevLett.60.848 1]</sup> illetve Wharam és szerzőtársai<sup>[http://dx.doi.org/10.1088/0022-3719/21/8/002 2]</sup> demonstrálták a vezetőképesség-kvantálást kétdimenziós elektrongáz-rendszerből kialakított kvantum-pontkontaktusban. A kísérletet sematikusan a 8. ábra szemlélteti. A kétdimenziós elektrongázban két felső kapuelektróda segítségével egy keskeny csatornát alakítunk ki, a csatorna szélessége a kapuelektródákra adott feszültséggel hangolható. Először a kapuelektródák alatt teljesen kiürítjük a kétdimenziós elektrongázt, majd a kapufeszültség változtatásával folyamatosan kinyitjuk a csatornát, és egyre szélesebb pontkontaktust alakítunk ki a két elektróda között. A vezetőképesség eközben lépcsőszerűen változik, először zérusról $2e^2/h$-ra nő, majd a vezetési csatornák egyenkénti kinyílásával a vezetőképesség-kvantum egész számú töbszöröseinél látunk platókat.
+
where $M$ is the number of transverse modes that ''fit'' into the narrowest part of the wire.
 +
 
 +
This phenomenon is observed in experiments too: The conductance quantisation was first demonstrated by van Wees et al.<sup>[http://link.aps.org/doi/10.1103/PhysRevLett.60.848 1]</sup> and Wharam et al.<sup>[http://dx.doi.org/10.1088/0022-3719/21/8/002 2]</sup> in a quantum point contact constructed from a two-dimensional electron gas system. The scheme of the experiment is depicted in figure 8. Using two gate electrodes a narrow channel is formed in the two-dimensional electron gas, which has a width tuned by the voltage applied across the gate electrodes. First, the two-dimensional electron gas is totally depleted below the gate electrodes, then the channel is opened changing the applied voltage, and a continuously wider point contact is formed between the two electrodes. In the meantime, the conductance changes steplike: at first, it increases from zero to 2e^2/h, which is followed by other plateaus at integer multiples of the conductance quantum, as a result of conduction channels opening one by one.
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
151. sor: 178. sor:
 
| align="center"|[[Fájl:2DEG_contact.ogv|bélyegkép|közép|800px|thumbtime=0:10]]
 
| align="center"|[[Fájl:2DEG_contact.ogv|bélyegkép|közép|800px|thumbtime=0:10]]
 
|-
 
|-
| align="center"|8. ábra. ''Vezetőképesség-kvantálás kvantum-pontkontaktusban''
+
| align="center"|Figure 8. ''Conductance quantisation in a quantum point contact. Here ''Kapu'' means the gate, ''Forrás'' and ''Nyelő'' mean source and drain respectively.''
 
|}
 
|}
  
Fontos megjegyezni, hogy egy félvezetőben - így a 8. ábrán szemléltetett kvantum-pontkontaktusban - az elektronok Fermi-hullámhossza párszor tíz nanométer nagyságrendű, így az elektronok ''nem látják'' az anyag atomi felépítéséből adódó, tized nanométer nagyságrendű egyenetlenséget, hanem egy sima, közel adiabatikus csatornát látnak. Ezzel szemben fémekben a Fermi-hullámhossz a szomszédos atomok távolságával összemérhető, így egyetlen vagy pár nyitott vezetési csatornával rendelkező pontkontaktust úgy kaphatunk, ha két elektródát mondjuk egyetlen atom köt össze. Ebben az esetben az elektronok a hullámhosszukkal azonos skálán változó, az anyag atomi felépítését tükröző potenciálban mozognak (lásd 9. ábra), melyről nem várjuk hogy adiabatikus legyen, azaz vezetőképesség-kvantálást sem várunk. A kísérletek ezt alá is támasztják,<sup>[http://dx.doi.org/10.1016%2FS0370-1573%2802%2900633-6 3]</sup> a legtöbb fémből készült atomi méretű kontaktusban ugyan csak pár nyitott vezetési csatorna áll rendelkezésre, de az azokhoz tartozó $\mathcal{T}_i$ transzmissziós sajátértékek általában tökéletlen transzmissziónak felelnek meg. Atomi mérető kontaktusok viselkedéséről röviden a [[Nanoszerkezetek előállítási és vizsgálati technikái#Önszerveződő_nanoszerkezetek|''Nanoszerkezetek előállítási és vizsgálati technikái'']] fejezetben számolunk be.
+
It's important to note that in a semiconductor - thus in the quantum point contact in figure 8 - the Fermi wavelength of electrons is on the order of a few ten nanometers such that the electrons don't see the unevenness on a scale of a few tenths nanometer coming from the atomic structure of the material. On the contrary, in metals, the Fermi wavelength is comparable to the distance of neighbouring atoms, thus point contacts with one or a few open channels are formed if the two electrodes are connected by one single atom. In this case, the electrons move in a potential that changes on the scale of the wavelength of electrons and thus reflects the atomic structure of the material which is not assumed to be adiabatic, so no conductance quantisation is expected. This is confirmed by experiments too,<sup>[http://dx.doi.org/10.1016%2FS0370-1573%2802%2900633-6 3]</sup> though only a few conduction channels are available in most of the metallic atomic contacts, their transmission eigenvalues mostly correspond to imperfect transmission. We briefly address the behaviour of atomic size contacts in chapter [[Nanoszerkezetek előállítási és vizsgálati technikái#Önszerveződő_nanoszerkezetek|''Construction and study of nanostructures'']]
 +
 
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"
160. sor: 188. sor:
 
| align="center"|[[Fájl:PointContact.png|közép|300px]]
 
| align="center"|[[Fájl:PointContact.png|közép|300px]]
 
|-
 
|-
| align="center"|9. ábra. ''A hullámhossz skáláján változó potenciálban nem várunk vezetőképesség-kvantálást''
+
| align="center"|Figure 9. ''In a potential that is changing on the scale of the wavelength of electrons no conductance quantisation is expected.''
 
|}
 
|}
 
</wlatex>
 
</wlatex>
  
==Hivatkozások==
+
==Bibliography==
  
===Fent hivatkozott szakcikkek===
+
===Articles referenced above===
 
[1] [http://prl.aps.org/abstract/PRL/v60/i9/p848_1 B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, C. T. Foxon: ''Quantized conductance of point contacts in a two-dimensional electron gas'', '''Phys. Rev. Lett. 60'' p848–850 (1988)]
 
[1] [http://prl.aps.org/abstract/PRL/v60/i9/p848_1 B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, C. T. Foxon: ''Quantized conductance of point contacts in a two-dimensional electron gas'', '''Phys. Rev. Lett. 60'' p848–850 (1988)]
  
173. sor: 201. sor:
 
[3] [http://www.sciencedirect.com/science/article/pii/S0370157302006336 Nicolás Agrait, Alfredo Levy Yeyati, Jan M. van Ruitenbeek:  ''Quantum properties of atomic-sized conductors'', '''Physics Reports 377''', p81–279 (2003)]
 
[3] [http://www.sciencedirect.com/science/article/pii/S0370157302006336 Nicolás Agrait, Alfredo Levy Yeyati, Jan M. van Ruitenbeek:  ''Quantum properties of atomic-sized conductors'', '''Physics Reports 377''', p81–279 (2003)]
  
===Ajánlott könyvek és összefoglaló cikkek===
+
===Recommended books and review articles===
 
*[http://books.google.hu/books/about/Electronic_Transport_in_Mesoscopic_Syste.html?id=28BC-ofEhvUC&redir_esc=y S. Datta: ''Electronic Transport in Mesoscopic Systems'', Cambridge University Press (1997)]
 
*[http://books.google.hu/books/about/Electronic_Transport_in_Mesoscopic_Syste.html?id=28BC-ofEhvUC&redir_esc=y S. Datta: ''Electronic Transport in Mesoscopic Systems'', Cambridge University Press (1997)]
 
*[http://books.google.hu/books/about/Semiconductor_Nanostructures.html?id=qD6623gfAZgC&redir_esc=y Thomas Ihn: ''Semiconducting nanosctructures'', OUP Oxford (2010)]
 
*[http://books.google.hu/books/about/Semiconductor_Nanostructures.html?id=qD6623gfAZgC&redir_esc=y Thomas Ihn: ''Semiconducting nanosctructures'', OUP Oxford (2010)]
 
*[http://books.google.hu/books?id=YNr4OcCExUcC&printsec=frontcover&dq=Nazarov+quantum+transport&hl=hu&sa=X&ei=2SzZUfGCMYna4ASDq4DQBQ&ved=0CDIQ6AEwAA Yuli V. Nazarov, Yaroslav M. Blanter: ''Quantum Transport: Introduction to Nanoscience'', Cambridge University Press (2009)]
 
*[http://books.google.hu/books?id=YNr4OcCExUcC&printsec=frontcover&dq=Nazarov+quantum+transport&hl=hu&sa=X&ei=2SzZUfGCMYna4ASDq4DQBQ&ved=0CDIQ6AEwAA Yuli V. Nazarov, Yaroslav M. Blanter: ''Quantum Transport: Introduction to Nanoscience'', Cambridge University Press (2009)]
  
===Ajánlott kurzusok===
+
===Recommended courses===
 
*[[Új kísérletek a nanofizikában|''Új kísérletek a nanofizikában'', Halbritter András és Csonka Szabolcs, BME Fizika Tanszék]]
 
*[[Új kísérletek a nanofizikában|''Új kísérletek a nanofizikában'', Halbritter András és Csonka Szabolcs, BME Fizika Tanszék]]
 
*[[Transzport komplex nanoszerkezetekben|''Transzport komplex nanoszerkezetekben'', Halbritter András, Csonka Szabolcs, Csontos Miklós, Makk Péter, BME Fizika Tanszék]]
 
*[[Transzport komplex nanoszerkezetekben|''Transzport komplex nanoszerkezetekben'', Halbritter András, Csonka Szabolcs, Csontos Miklós, Makk Péter, BME Fizika Tanszék]]

A lap jelenlegi, 2019. május 17., 17:23-kori változata

Tartalomjegyzék

Characteristic length scales


The conduction properties of a nanoscale object differ from the familiar features on the macroscopic scale. The resistance of a macroscopic wire is well described using Ohm’s law: the current density (\setbox0\hbox{$\vec{j}$}% \message{//depth:\the\dp0//}% \box0%) equals to the conductivity (\setbox0\hbox{$\sigma$}% \message{//depth:\the\dp0//}% \box0%) multiplied by the electric field (\setbox0\hbox{$\vec{E}$}% \message{//depth:\the\dp0//}% \box0%); the conductance (\setbox0\hbox{$G$}% \message{//depth:\the\dp0//}% \box0%) is proportional to the cross-section of the wire (\setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0%) and inversely proportional to its length (\setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%):

\[\vec{j}=\sigma \cdot \vec{E}, \ \ \ G=R^{-1}=\frac{A\cdot \sigma}{L}\]

Ohm’s law is easily explained by the Drude model of electric conduction: the electrons travel in the crystal lattice gaining \setbox0\hbox{$p_\text{drift}$}% \message{//depth:\the\dp0//}% \box0% momentum and then losing it by scattering into a random direction. The time elapsed between two scattering events is called the momentum relaxation time and is denoted by \setbox0\hbox{$\tau_\text{m}$}% \message{//depth:\the\dp0//}% \box0%. The momentum gained by the electrons in time \setbox0\hbox{$\tau_\text{m}$}% \message{//depth:\the\dp0//}% \box0% is:

\[p_\mathrm{drift}=m\cdot v_\mathrm{drift}=eE\tau_\text{m}.\]

According to this, the current density and the conductivity in case of electron density \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0%:

\[\vec{j}=n\cdot e\cdot v_\mathrm{drift}\ \ \ \rightarrow \ \ \ \sigma=\frac{ne^2\tau_\text{m}}{m}.\]

Between two scattering events -- in time \setbox0\hbox{$\tau_{\text{m}}$}% \message{//depth:\the\dp0//}% \box0% -- electrons travel a distance \setbox0\hbox{$l_{\text{m}} = v_\text{F} \cdot \tau_\text{m}$}% \message{//depth:\the\dp0//}% \box0%, where \setbox0\hbox{$v_{\text{F}}$}% \message{//depth:\the\dp0//}% \box0% is the Fermi velocity. This distance is called the momentum relaxation length. The Drude model loses its meaning if the characteristic size (\setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%) of the wire in question is less than the momentum relaxation length characterizing the scale of the scatterings. Based on this we can differentiate between diffusive and ballistic wires. In the diffusive case (\setbox0\hbox{$L > l_{\text{m}}$}% \message{//depth:\the\dp0//}% \box0%) the electrons scatter many times before they get from one electrode into the other (figure 1/a.), while in the ballistic case (\setbox0\hbox{$L<l_{\text{m}}$}% \message{//depth:\the\dp0//}% \box0%) the electrons scatter don't scatter inside the wire, only on its walls (figure 1/b.).

Diffuziv vezetek.png
Ballisztikus vezetek.png
Figure 1/a. Diffusive wire Figure 1/b. Ballistic wire

The length dependence of the resistance clearly demonstrates the difference between the two limiting cases: while the resistance of a diffusive wire increases by lengthening the wire, the electrons that get in a ballistic wire can travel through it without scattering back, i.e. that the resistance does not depend on the length of the wire.

Taking into account the wave nature of electrons it is worth to investigate whether the phase information of electrons is conserved or not on the size-scale of the examined system. If the size of the sample is smaller than the \setbox0\hbox{$L_\phi$}% \message{//depth:\the\dp0//}% \box0% phase-relaxation length, then the conduction properties show interesting interference phenomena that can’t be seen on the macroscopic scale. We cover these phenomena in chapter interference and decoherence in nanostructures.

Another interesting question is whether the spin information of electrons is conserved in the nanostructure under investigation. In nanostructures that are smaller than the so-called spin diffusion length (\setbox0\hbox{$L_\text{s}$}% \message{//depth:\the\dp0//}% \box0%) and contain magnetically ordered regions interesting spintronic phenomena can be observed.

Further interesting phenomena occur if the cross-section of the wire becomes comparable to the Fermi wavelength of electrons: \setbox0\hbox{$L \sim \lambda_{\text{F}}$}% \message{//depth:\the\dp0//}% \box0%. We explain this below.

Resistance of quantum wires


Let’s consider the properties of nanowires comparable with the wavelength of electrons using a simple model: we connect two electron reservoirs with a 2-dimensional ideal quantum wire with parallel walls, in which the electrons travel without scattering (figure 2.).

Qwire.png
Figure 2. Ideal quantum wire

Using hard wall boundary condition (i.e. the enclosing potential is zero inside and infinite outside of the wire) the wavefunction of the electrons:

\[\Psi_{n,k}(x,y)=e^{ikx}\cdot \sin\left(\frac{n \pi y}{W} \right),\]

that is, in the longitudinal direction we get plane wave propagation, while in the transversal direction standing waves. According to this the energy of the electrons:

\[\varepsilon_n(k)=\frac{\hbar^2k^2}{2 m} + \frac{\pi^2 \hbar^2}{2 m W^2}\cdot n^2,\]

where \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% is the wavenumber belonging to the plane wave propagation along the \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0%-direction and \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% describes the quantised transverse modes (standing waves along the \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0%-direction). This expression for the energy corresponds to the one-dimensional energy dispersion relation offset by the transverse mode energies as depicted in the figure. Reasonably, current can only flow through those modes (the so-called conduction channels) that have transverse mode energies smaller than the Fermi energy of the electrodes that is, the dispersion relation intersects with the Fermi level. The modes that satisfy this criterion, are called open conduction channels and the number of open conduction channel is denoted by \setbox0\hbox{$M$}% \message{//depth:\the\dp0//}% \box0%.

Disp.png
Disp Biased.png
Figure 3/a. Dispersion relation in an ideal quantum wire Figure 3/b. Dispersion relation when a bias is applied to the sample

If we turn on \setbox0\hbox{$V$}% \message{//depth:\the\dp0//}% \box0% bias between the two electron reservoirs, the electron states of the nanowire will be filled as represented in figure 3/b. The states with positive \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% values originate from the left electrode, so these are filled to energies \setbox0\hbox{$eV$}% \message{//depth:\the\dp0//}% \box0% higher than the states coming from the right electrode with negative \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% values. Only the states with positive \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% and in the region between chemical potentials \setbox0\hbox{$\mu_1$}% \message{//depth:\the\dp0//}% \box0% and \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% contribute to the current transport, as below the \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% chemical potential both the positive and negative propagating states are filled, so the total current becomes zero.

For a given conduction channel the velocity of the electrons and the density of states are as follows:

\[v_n=\frac{1}{\hbar}\frac{\partial \varepsilon_n(k)}{\partial k},\ \ \ \ g_n=\frac{L}{2\pi}\left(\frac{\partial \varepsilon_n(k)}{\partial k}\right)^{-1}.\]

The electron density in the \setbox0\hbox{$eV$}% \message{//depth:\the\dp0//}% \box0% range is calculated as: \setbox0\hbox{$n_n=eV\cdot g_n/L$}% \message{//depth:\the\dp0//}% \box0%. To calculate the total current flowing through the wire we multiply the electron charge, the velocity and the electron density then sum these up for the individual conduction channels:

\[I=2\sum_{n=1}^{M}e v_n n_n =\frac{2e^2}{h}MV,\]

where the multiplier 2 corresponds to the spin degeneracy. Since the derivative of the energy dispersion in the product of the velocity and the electron density cancels, the conductance of the quantum wire is simply the integer multiple of the conductance quantum \setbox0\hbox{$G_0=2e^2/h$}% \message{//depth:\the\dp0//}% \box0%. It’s worth to note that momentum is conserved in the \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0%-direction due to the longitudinal translation invariance, which prohibits the scattering between conduction channels, as it would change the wavenumber \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% so we really can treat the current contribution of the individual conduction channels independently.

The above calculation was derived from the assumption that occupied states are only to be found below the chemical potential \setbox0\hbox{$\mu$}% \message{//depth:\the\dp0//}% \box0% of the electrodes that is, the temperature is zero. At finite temperature, we can find both occupied and unoccupied states in the \setbox0\hbox{$k_{\text{B}}T$}% \message{//depth:\the\dp0//}% \box0% wide range around the chemical potential. The possibility of a state being occupied is described by the Fermi function:

\[f(\varepsilon)=\frac{1}{e^{\frac{\varepsilon -\mu}{k_{\text{B}}T}}+1}.\]

Inside the quantum wire the electron states originating from the left electrode (\setbox0\hbox{$k > 0$}% \message{//depth:\the\dp0//}% \box0%) are occupied according to \setbox0\hbox{$f_1$}% \message{//depth:\the\dp0//}% \box0%, the occupation number function of electrode 1, while the electron states from the right electrode (\setbox0\hbox{$k<0$}% \message{//depth:\the\dp0//}% \box0%) according to \setbox0\hbox{$f_2$}% \message{//depth:\the\dp0//}% \box0% the occupation number function of electrode 2. Here \setbox0\hbox{$f_1$}% \message{//depth:\the\dp0//}% \box0% and \setbox0\hbox{$f_2$}% \message{//depth:\the\dp0//}% \box0% are Fermi functions offset with energy \setbox0\hbox{$eV$}% \message{//depth:\the\dp0//}% \box0% relative to each other. This description also presumes the electron reservoirs to be perfect: the electrons that enter the electrode from the quantum wire can scatter back into the quantum wire only after thermalisation, so the electrons leaving the electrode truly follow the energy distribution that corresponds to the Fermi function of the given electrode. As a consequence of the arguments above, the current flowing in the wire at finite temperature into the positive and the negative direction respectively:

\[I^+=\frac{2 e}{L} \sum \limits_{k>0} v_k f_1(\varepsilon_k) = 2e \int \frac{\mathrm{d}k}{2 \pi}\frac{\partial \varepsilon_k}{\hbar \partial k} f_1(\varepsilon_k) = \frac{2 e}{h}\int \mathrm{d} \varepsilon f_1(\varepsilon),\]
\[I^-=\frac{2 e}{L} \sum \limits_{k<0} v_k f_2(\varepsilon_k) = \frac{2 e}{h}\int \mathrm{d} \varepsilon f_2(\varepsilon),\]

i.e. the total current is:

\[I=I^+-I^-=\frac{2 e}{h} \int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))=\frac{2 e}{h}e V.\]

The integral \setbox0\hbox{$\int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))$}% \message{//depth:\the\dp0//}% \box0% equals eV at any finite temperature, which infers the conductance of a single-channel ideal quantum wire to be the conductance quantum, \setbox0\hbox{$G_0$}% \message{//depth:\the\dp0//}% \box0% at arbitrary temperature, which corresponds to a resistance of \setbox0\hbox{$12900\;\Omega$}% \message{//depth:\the\dp0//}% \box0%.

Landauer formalism


Let’s examine the simple model of a single-channel ideal quantum wire with a scattering centre in the middle, which transmits electrons with probability \setbox0\hbox{$\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0%. In this case, the states travelling from the electrodes in the direction of the scattering region still originate from the corresponding electrode and adhere to its distribution function (see current contributions \setbox0\hbox{$\mathrm{d}I_1^+$}% \message{//depth:\the\dp0//}% \box0% and \setbox0\hbox{$\mathrm{d}I_2^-$}% \message{//depth:\the\dp0//}% \box0% in figure 4). On the other hand, the states travelling from the scattering region towards the electrodes are mixed, e.g. in case of the \setbox0\hbox{$\mathrm{d}I_1^-$}% \message{//depth:\the\dp0//}% \box0% current contribution both the states backscattered from the scattering region originating from electrode 1 and the states coming from electrode 2 then transmitted by the scattering region.

Qwire2.png
Figure 4. Single-channel quantum wire with scattering centre with transmission probability \setbox0\hbox{$\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0%

At zero temperature only the states below the \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% chemical potential can come from both of the electrodes, but the total current of the states with \setbox0\hbox{$\varepsilon < \mu_2$}% \message{//depth:\the\dp0//}% \box0% equals to zero because it corresponds to the case where the bias applied to the system is zero. Thus the states with energy \setbox0\hbox{$\mu_2 < \varepsilon < \mu_1$}% \message{//depth:\the\dp0//}% \box0% account for the finite current, which can originate only from electrode 1. So the total current can easily be calculated in the lead section between the scattering centre and electrode 2. Here the electrons in the energy band \setbox0\hbox{$\mu_2 < \varepsilon < \mu_1$}% \message{//depth:\the\dp0//}% \box0% would give \setbox0\hbox{$I=(2e^2/h)\cdot V$}% \message{//depth:\the\dp0//}% \box0% current for \setbox0\hbox{$T=1$}% \message{//depth:\the\dp0//}% \box0%, which would scale with the number of the transmitted electrons for \setbox0\hbox{$T < 1$}% \message{//depth:\the\dp0//}% \box0%: \setbox0\hbox{$I=(2e^2/h)\cdot \mathcal{T} \cdot V$}% \message{//depth:\the\dp0//}% \box0%. So the conductance of a single-channel nanowire with a scattering centre in the middle which has transmission probability \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%:

\[G=\frac{2e^2}{h}\mathcal{T}.\]

Let’s check whether this solution is valid for finite temperatures. The current components \setbox0\hbox{$\mathrm{d}I_1^+$}% \message{//depth:\the\dp0//}% \box0% and \setbox0\hbox{$\mathrm{d}I_2^-$}% \message{//depth:\the\dp0//}% \box0% originate solely from electrode 1 or 2, thus their current contributions in the energy range \setbox0\hbox{$\mathrm{d}\varepsilon$}% \message{//depth:\the\dp0//}% \box0%:

\[\mathrm{d}I_1^+(\varepsilon)=\frac{2 e}{h}\cdot f_1(\varepsilon)\mathrm{d}\varepsilon,\;\; \mathrm{d}I_2^-(\varepsilon)=\frac{2 e}{h}\cdot f_2(\varepsilon)\mathrm{d}\varepsilon.\]

If we want to calculate the current in the lead section between the scattering centre and lead 1, then we also need the current component \setbox0\hbox{$\mathrm{d}I_1^-$}% \message{//depth:\the\dp0//}% \box0%, which originates with probability \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% from the transmission of the mode coming from electrode 2, or with probability \setbox0\hbox{$R=1-T$}% \message{//depth:\the\dp0//}% \box0% from the reflection of the mode coming from electrode 1:

\[\mathrm{d}I_1^-(\varepsilon)=\mathrm{d}I_1^+(\varepsilon)\cdot (1-\mathcal{T}) + \mathrm{d}I_2^-(\varepsilon)\cdot \mathcal{T},\]

so the combined contributions of the currents flowing into the negative and positive directions:

\[\mathrm{d}I_1=\mathrm{d}I_1^+ - \mathrm{d}I_1^- = \frac{2 e}{h} \cdot \mathcal{T} \cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\epsilon.\]

We obtain the total current by integration:

\[I=\frac{2 e}{h} \cdot \int \mathcal{T}\cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\varepsilon.\]

The difference of the two Fermi functions differs from zero only in the energy range between the chemical potentials \setbox0\hbox{$\mu_1$}% \message{//depth:\the\dp0//}% \box0% and \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% and the \setbox0\hbox{$k_\text{B}T$}% \message{//depth:\the\dp0//}% \box0% wide vicinity of the chemical potentials. Assuming that the transmission probability \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% is energy independent, and utilizing the equation \setbox0\hbox{$\int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))=eV$}% \message{//depth:\the\dp0//}% \box0%, we get

\[G=\frac{2 e^2}{h}\cdot \mathcal{T}\]


for the conductance even for finite temperatures. If the transmission probability cannot be treated energy independently, then \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% has to be considered as the average transmission probability in the relevant energy range.

Transzmisszios matrix 2.png
Figure 5. Description of a multi-channel quantum wire with transmission matrix \setbox0\hbox{$\hat{t}$}% \message{//depth:\the\dp0//}% \box0%

In case of more conduction channels the effect of the scattering centre can be described by the complex transmission matrix (\setbox0\hbox{$\hat{t}$}% \message{//depth:\the\dp0//}% \box0%) (see figure 5.) which connects the incoming modes into the individual channels on the left side propagating from the electrode towards the scattering centre (in figure 5 denoted by \setbox0\hbox{$\left| \mathrm{be} \right>_1$}% \message{//depth:\the\dp0//}% \box0%) and the outgoing modes on the right side propagating from the scattering region in the direction of the electrode (\setbox0\hbox{$\left|  \mathrm{ki} \right>_2$}% \message{//depth:\the\dp0//}% \box0% in the figure):

\[\left|  \mathrm{out} \right>_2=\hat{t} \left| \mathrm{in} \right>_1.\]

One can show that the conductance then is written as:

\[G = \frac{2 e^2}{h} \mathrm{Tr}(\hat{t}^\dagger \hat{t}).\]

One can rewrite \setbox0\hbox{$\mathrm{Tr}(\hat{t}^\dagger \hat{t})$}% \message{//depth:\the\dp0//}% \box0% as \setbox0\hbox{$\sum_{i,j} t_{j,i}^* \cdot t_{j,i} = \sum_{i,j} \mathcal{T}_{j,i}$}% \message{//depth:\the\dp0//}% \box0%, where \setbox0\hbox{$\mathcal{T}_{j,i}=|t_{j,i}|^2$}% \message{//depth:\the\dp0//}% \box0% gives the probability of scattering from channel \setbox0\hbox{$i$}% \message{//depth:\the\dp0//}% \box0% on the left side into channel \setbox0\hbox{$j$}% \message{//depth:\the\dp0//}% \box0% on the right side. Thus the conductance:

\[G = \frac{2 e^2}{h} \sum \limits_{i,j} \mathcal{T}_{j,i}.\]

Choosing a proper basis one can diagonalise the problem, this way restricting electrons to scatter from channel \setbox0\hbox{$i$}% \message{//depth:\the\dp0//}% \box0% on the left side solely into channel \setbox0\hbox{$i$}% \message{//depth:\the\dp0//}% \box0% on the right side. One can then consider the system to consist of N – corresponding to the number of open conduction channels – independent one-dimensional wire and simply sum up their conductance contribution:

\[G = \frac{2 e^2}{h} \sum \limits_{i=1..N} \mathcal{T}_i.\]

The \setbox0\hbox{$\mathcal{T}_i$}% \message{//depth:\the\dp0//}% \box0% transmission coefficients corresponding to the eigenvalues of the operator \setbox0\hbox{$\hat{t}^\dagger \hat{t}$}% \message{//depth:\the\dp0//}% \box0% give us the transmission probability of the \setbox0\hbox{$i$}% \message{//depth:\the\dp0//}% \box0%th eigenchannel.


Conductance quantisation in a quantum point contact


Now examine a 2-dimensional quantum wire without scattering centres, and let its width decrease slowly (adiabatically) along the longitudinal axis. Thanks to the slowly changing width, the wire approximately consists of parallel-walled wire sections, and the transversal standing waves along with the longitudinal propagating plane waves corresponding to the width of the wire describe the wavefunction. In the upper panel of figure 6 depicts the energy of the transverse modes along the wire for each conduction channel. Obviously, only the channels that have an energy lower than the Fermi energy even in the narrowest portion can get through the wire (the so-called quantum point contact)

PointContact2.png
Figure 6. Transverse mode energies in an adiabatic quantum point contact

Figure 7 shows the dispersion relations in two points inside the wire near to each other. The right one belongs to a somewhat narrower section of the wire, thus the parabolic dispersions are shifted slightly up due to the higher transverse mode energy. As the wire is practically translation invariant, the longitudinal momentum and the \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% wavenumber can only change a little while an electron travels from a given portion to another one near. A state in a given channel with wavenumber \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% can only travel forward with small momentum change inside a wire with decreasing width if it remains in the same conduction channel (see green arrow on figure 7). On the other hand, scattering into another channel or backscattering would change the wavenumber \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% significantly. The situation is different if the dispersion relation of the given channel gets shifted up during the propagation so that it does not cross the Fermi level anymore, prohibiting the electron to go further. In this case, the process that causes the least change in the momentum is that the state with nearly zero but positive \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% scatters back into the state with wavenumber \setbox0\hbox{$-k$}% \message{//depth:\the\dp0//}% \box0% of the same channel (see red arrow on figure 7).

Adiabatic2.png
Figure 7. In an adiabatic quantumwire electrons propagate forward in their own conduction channel as long as it is open (green arrow). If the channel closes, the electrons are scattered back (red arrow).

Based on the findings above, all the channels that have energy below the Fermi level even in the narrowest part of the quantum point contact with slowly changing width get transmitted with probability \setbox0\hbox{$\mathcal{T}=1$}% \message{//depth:\the\dp0//}% \box0% (see green curves in figure 6), while all other channels get reflected with probability \setbox0\hbox{$\mathcal{R}=1$}% \message{//depth:\the\dp0//}% \box0% (red curves in figure 6). Consequently, the conductance is an integer multiple of the conductance quantum:

\[G=\frac{2e^2}{h}M,\]

where \setbox0\hbox{$M$}% \message{//depth:\the\dp0//}% \box0% is the number of transverse modes that fit into the narrowest part of the wire.

This phenomenon is observed in experiments too: The conductance quantisation was first demonstrated by van Wees et al.1 and Wharam et al.2 in a quantum point contact constructed from a two-dimensional electron gas system. The scheme of the experiment is depicted in figure 8. Using two gate electrodes a narrow channel is formed in the two-dimensional electron gas, which has a width tuned by the voltage applied across the gate electrodes. First, the two-dimensional electron gas is totally depleted below the gate electrodes, then the channel is opened changing the applied voltage, and a continuously wider point contact is formed between the two electrodes. In the meantime, the conductance changes steplike: at first, it increases from zero to 2e^2/h, which is followed by other plateaus at integer multiples of the conductance quantum, as a result of conduction channels opening one by one.

2DEG contact.ogv
Figure 8. Conductance quantisation in a quantum point contact. Here Kapu means the gate, Forrás and Nyelő mean source and drain respectively.

It's important to note that in a semiconductor - thus in the quantum point contact in figure 8 - the Fermi wavelength of electrons is on the order of a few ten nanometers such that the electrons don't see the unevenness on a scale of a few tenths nanometer coming from the atomic structure of the material. On the contrary, in metals, the Fermi wavelength is comparable to the distance of neighbouring atoms, thus point contacts with one or a few open channels are formed if the two electrodes are connected by one single atom. In this case, the electrons move in a potential that changes on the scale of the wavelength of electrons and thus reflects the atomic structure of the material which is not assumed to be adiabatic, so no conductance quantisation is expected. This is confirmed by experiments too,3 though only a few conduction channels are available in most of the metallic atomic contacts, their transmission eigenvalues mostly correspond to imperfect transmission. We briefly address the behaviour of atomic size contacts in chapter Construction and study of nanostructures


PointContact.png
Figure 9. In a potential that is changing on the scale of the wavelength of electrons no conductance quantisation is expected.

Bibliography

Articles referenced above

[1] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, C. T. Foxon: Quantized conductance of point contacts in a two-dimensional electron gas, 'Phys. Rev. Lett. 60 p848–850 (1988)

[2] D A Wharam, T J Thornton, R Newbury, M Pepper, H Ahmed, J E F Frost, D G Hasko, D C Peacock, D A Ritchie and G A C Jones: One-dimensional transport and the quantisation of the ballistic resistance, Journal of Physics C: Solid State Physics 21 L209 (1988)

[3] Nicolás Agrait, Alfredo Levy Yeyati, Jan M. van Ruitenbeek: Quantum properties of atomic-sized conductors, Physics Reports 377, p81–279 (2003)

Recommended books and review articles

Recommended courses