Electron transport in nanowires: Landauer formula, conductance quantization

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Measure (vitalap | szerkesztései) 2019. május 16., 20:38-kor történt szerkesztése után volt.

Tartalomjegyzék

Characteristic length scales


The conduction properties of a nanoscale object differ from the familiar features on the macroscopic scale. The resistance of a macroscopic wire is well described using Ohm’s law: the current density (\setbox0\hbox{$\vec{j}$}% \message{//depth:\the\dp0//}% \box0%) equals to the conductivity (\setbox0\hbox{$\sigma$}% \message{//depth:\the\dp0//}% \box0%) multiplied by the electric field (\setbox0\hbox{$\vec{E}$}% \message{//depth:\the\dp0//}% \box0%); the conductance (\setbox0\hbox{$G$}% \message{//depth:\the\dp0//}% \box0%) is proportional to the cross-section of the wire (\setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0%) and inversely proportional to its length (\setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%):

\[\vec{j}=\sigma \cdot \vec{E}, \ \ \ G=R^{-1}=\frac{A\cdot \sigma}{L}\]

Ohm’s law is easily explained by the Drude model of electric conduction: the electrons travel in the crystal lattice gaining \setbox0\hbox{$p_\text{drift}$}% \message{//depth:\the\dp0//}% \box0% momentum and then losing it by scattering into a random direction. The time elapsed between two scattering events is called the momentum relaxation time and is denoted by \setbox0\hbox{$\tau_\text{m}$}% \message{//depth:\the\dp0//}% \box0%. The momentum gained by the electrons in time \setbox0\hbox{$\tau_\text{m}$}% \message{//depth:\the\dp0//}% \box0% is:

\[p_\mathrm{drift}=m\cdot v_\mathrm{drift}=eE\tau_\text{m}.\]

According to this, the current density and the conductivity in case of electron density \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0%:

\[\vec{j}=n\cdot e\cdot v_\mathrm{drift}\ \ \ \rightarrow \ \ \ \sigma=\frac{ne^2\tau_\text{m}}{m}.\]

Between two scattering events -- in time \setbox0\hbox{$\tau_{\text{m}}$}% \message{//depth:\the\dp0//}% \box0% -- electrons travel a distance \setbox0\hbox{$l_{\text{m}} = v_\text{F} \cdot \tau_\text{m}$}% \message{//depth:\the\dp0//}% \box0%, where \setbox0\hbox{$v_{\text{F}}$}% \message{//depth:\the\dp0//}% \box0% is the Fermi velocity. This distance is called the momentum relaxation length. The Drude model loses its meaning if the characteristic size (\setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%) of the wire in question is less than the momentum relaxation length characterizing the scale of the scatterings. Based on this we can differentiate between diffusive and ballistic wires. In the diffusive case (\setbox0\hbox{$L > l_{\text{m}}$}% \message{//depth:\the\dp0//}% \box0%) the electrons scatter many times before they get from one electrode into the other (figure 1/a), while in the ballistic case (\setbox0\hbox{$L<l_{\text{m}}$}% \message{//depth:\the\dp0//}% \box0%) the electrons scatter don't scatter inside the wire, only on its walls (figure 1/b).

Diffuziv vezetek.png
Ballisztikus vezetek.png
Figure 1/a. Diffusive wire Figure 1/b. Ballistic wire

The length dependence of the resistance clearly demonstrates the difference between the two limiting cases: while the resistance of a diffusive wire increases by lengthening the wire, the electrons that get in a ballistic wire can travel through it without scattering back, i.e. that the resistance does not depend on the length of the wire.

Taking into account the wave nature of electrons it is worth to investigate whether the phase information of electrons is conserved or not on the size-scale of the examined system. If the size of the sample is smaller than the \setbox0\hbox{$L_\phi$}% \message{//depth:\the\dp0//}% \box0% phase-relaxation length, then the conduction properties show interesting interference phenomena that can’t be seen on the macroscopic scale. We cover these phenomena in chapter interference and decoherence in nanostructures.

Another interesting question is whether the spin information of electrons is conserved in the nanostructure under investigation. In nanostructures that are smaller than the so-called spin diffusion length (\setbox0\hbox{$L_\text{s}$}% \message{//depth:\the\dp0//}% \box0%) and contain magnetically ordered regions interesting spintronic phenomena can be observed.

Further interesting phenomena occur if the cross-section of the wire becomes comparable to the Fermi wavelength of electrons: \setbox0\hbox{$L \sim \lambda_{\text{F}}$}% \message{//depth:\the\dp0//}% \box0%. We explain this below.

Kvantumvezeték ellenállása


Az elektronok hullámhosszával összemérhető vezetékek tulajdonságait vizsgáljuk meg egy egyszerű modellel: két elektrontartályt kössünk össze egy kétdimenziós, párhuzamos falú ideális kvantumvezetékkel, melyben az elektronok szóródás nélkül haladnak (2. ábra).

Qwire.png
2. ábra. Ideális kvantumvezeték

Hard wall határfeltételt alkalmazva (azaz a bezáró potenciál a vezetéken belül ill. kívül zérus ill. végtelen) egyszerűen felírható az elektronok hullámfüggvénye:

\[\Psi_{n,k}(x,y)=e^{ikx}\cdot \sin\left(\frac{n \pi y}{W} \right),\]
azaz hosszirányban (LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$x$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex>) síkhullám terjedést, keresztirányban pedig kvantált állóhullámokat kapunk. Ennek megfelelően az elektronok energiája:

\[\varepsilon_n(k)=\frac{\hbar^2k^2}{2 m} + \frac{\pi^2 \hbar^2}{2 m W^2}\cdot n^2,\]
ahol LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$k$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> az LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$x$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex>-irányú síkhullám terjedéshez tartozó hullámszám, LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$n$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> pedig a kvantált keresztmódust (LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$y$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex>-irányú állóhullámot) jellemzi. Az energiakifejezés a 3/a. ábrán szemléltetett, egymáshoz képest a keresztirányú energiák szerint eltolt egydimenziós diszperziós relációknak felel meg. Értelemszerűen csak azon módusokon (ún. vezetési csatornákon) keresztül folyhat áram, melyekhez tartozó keresztirányú energia kisebb az elektródák Fermi-energiájánál, azaz a diszperziós reláció metszi a Fermi-szintet. Ezen feltételnek megfelelő módusokat nyitott vezetési csatornának nevezzük, a nyitott csatornák számát LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$M$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex>-mel jelöljük.

Disp.png
Disp Biased.png
3/a. ábra. Diszperzós reláció ideális kvantumvezetékben 3/b. ábra. Diszperzós reláció a mintára feszültséget kapcsolva



Ha a két elektrontartály közé LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$V$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> feszültséget kapcsolunk akkor a nanovezeték elektronállapotai a 3/b. ábrán szemléltetett módon töltődnek be: a pozitív LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$k$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex>-val rendelkező állapotok mind a bal oldali elektródából származnak, így ezek LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$eV$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex>-vel magasabb energiáig vannak betöltve mint a jobb oldali elektródából származó, negatív LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$k$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex>-val rendelkező állapotok. Áramot csak a LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$\mu_1$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> ás LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$\mu_2$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> kémiai potenciál közötti tartományban levő pozitív LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$k$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex>-jú állapotok szállítanak, hiszen LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$\mu_2$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex> kémiai potenciál alatt a pozitív és negatív irányba haladó állapotok egyaránt betöltöttek, így eredő áramuk zérus lesz.

Egy adott vezetési csatornára az elektronok sebességét, illetve az állapotsűrűséget a következőképpen írhatjuk:

\[v_n=\frac{1}{\hbar}\frac{\partial \varepsilon_n(k)}{\partial k},\ \ \ \ g_n=\frac{L}{2\pi}\left(\frac{\partial \varepsilon_n(k)}{\partial k}\right)^{-1}.\]
Az LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$eV$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> energiasávban található elektronok sűrűségét LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$n_n=eV\cdot g_n/L$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex> képlettel számolhatjuk. A vezetékben folyó áram számolásához az elektrontöltés, a sebesség és az elektronsűrűség szorzatát kell képezni, illetve ezt összegezni a különböző vezetési csatornákra:

\[I=2\sum_{n=1}^{M}e v_n n_n =\frac{2e^2}{h}MV,\]
ahol a kettes szorzó a spin szerinti degenerációnak felel meg. Mivel a sebesség és az elektronsűrűség szorzatában az energiadiszperzió deriváltja kiesik, a kvantumvezeték vezetőképessége egyszerűen a LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$G_0=2e^2/h$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> vezetőképesség-kvantum egész számú többszörösének adódik. Érdemes megjegyezni, hogy a hosszirányú transzláció-invariancia miatt az LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$x$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex> irányú impulzus megmarad,

így az egyes csatornák között nem történhet átszóródás, mert az a LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$k$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex> hullámszám megváltozásával járna, azaz a vezetési csatornák áramjárulékát valóban tekinthetjük egymástól függetlennek.

A fenti számolásban abból indultunk ki, hogy csak az elektródák kémiai potenciálja alatt találunk betöltött állapotokat, azaz zérus hőmérsékletet tételezünk fel. Véges hőmérsékleten a kémiai potenciál LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$kT$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex> szélességű környezetében egyaránt találhatók betöltött és betöltetlen állapotok, az állapotok betöltöttségének valószínűségét a Fermi-függvény írja le:

\[f(\varepsilon)=\frac{1}{e^{\frac{\varepsilon -\mu}{kT}}+1}.\]
Az kvantumvezeték belsejében a LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$k>0$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex>, bal oldali elektródából származó elektronállapotok betöltöttségét az 1-es elektróda LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$f_l(\varepsilon)$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> betöltési szám függvénye írja le, míg a LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$k<0$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> állapotok a 2-es elektróda LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$f_2(\varepsilon)$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> betöltési szám függvényével jellemezhetők, ahol LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$f_1$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> és LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$f_2$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> egymáshoz képest LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$eV$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex> energiával eltolt Fermi-függvények. Ez a leírás egyben az elektrontartályok tökéletességét is feltételezi, azaz a kvantumvezetékből az egyik elektródába érkező elektronok csak termalizálódás után szóródhatnak vissza a kvantumvezetékbe, így az elektródát elhagyó elektronok valóban az elektróda Fermi-függvénye szerinti energiaeloszlást követik. A fentiek alapján véges hőmérsékleten a vezetékben pozitív illetve negatív irányba folyó áramot az

\[I^+=\frac{2 e}{L} \sum \limits_{k>0} v_k f_1(\varepsilon_k) = 2e \int \frac{\mathrm{d}k}{2 \pi}\frac{\partial \varepsilon_k}{\hbar \partial k} f_1(\varepsilon_k) = \frac{2 e}{h}\int \mathrm{d} \varepsilon f_1(\varepsilon),\]
\[I^-=\frac{2 e}{L} \sum \limits_{k<0} v_k f_2(\varepsilon_k) = \frac{2 e}{h}\int \mathrm{d} \varepsilon f_2(\varepsilon)\]

képletek írják le, azaz az eredő áram:

\[I=I^+-I^-=\frac{2 e}{h} \int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))=\frac{2 e}{h}e V.\]
Mivel LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$\int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> integrál tetszőleges hőmérsékleten LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$eV$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex>-vel egyenlő, így egy egycsatornás ideális kvantumvezeték ellenállása tetszőleges hőmérsékleten a LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$G_0=2 e^2/h$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0%

</latex> vezetőképesség-kvantum, ami LaTex syntax error
\setbox0\hbox{\setbox0\hbox{$\approx 12900\,\Omega$}%
\message{//depth:\the\dp0//}%
\box0%
}%

\message{//depth:\the\dp0//}% \box0% </latex> ellenállásnak felel meg.

Landauer-formula


Most tekintsük azt az egyszerű modellt, amikor egy egycsatornás, ideális kvantumvezeték közepén egy szórócentrum található, melyen \setbox0\hbox{$\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0% valószínűséggel jutnak át az elektronok. Ebben az esetben az elektródák felől a szórócentrum felé haladó állapotok továbbra is a megfelelő elektródából származnak, és ennek az eloszlásfüggvényét követik (lásd a 4. ábrán a \setbox0\hbox{$\mathrm{d}I_1^+$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\mathrm{d}I_2^-$}% \message{//depth:\the\dp0//}% \box0% áramkomponenseket). A szórócentrumtól az elektródák felé haladó állapotok viszont kevertek, pl. a \setbox0\hbox{$\mathrm{d}I_1^-$}% \message{//depth:\the\dp0//}% \box0% áramjáruléknál egyaránt figyelembe kell venni az 1-es elektródából induló és a szórócentrumon reflektálódó, illetve a 2-es elektródából induló és a szórócentrumon transzmittálódó elektronokat.

Qwire2.png
4. ábra. Egycsatornás kvantumvezeték \setbox0\hbox{$\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0% átmeneti valószínűségű szórócentrummal

Zérus hőmérsékleten csak a \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% kémiai potenciál alatti állapotok származhatnak mindkét elektródából, azonban az \setbox0\hbox{$\varepsilon<\mu_2$}% \message{//depth:\the\dp0//}% \box0% állapotok teljes árama értelemszerűen zérust ad, hiszen ez annak felel meg, mintha zérus feszültséget kapcsoltunk volna a rendszerre. Így a véges áramért továbbra is \setbox0\hbox{$\mu_2 <\varepsilon< \mu_1$}% \message{//depth:\the\dp0//}% \box0% állapotok felelnek, melyek csak az 1-es elektródából származhatnak. Így a teljes áram könnyen számolható például a szórócentrum és a 2-es elektróda közötti vezetékdarabban. Itt a \setbox0\hbox{$\mu_2 <\varepsilon< \mu_1$}% \message{//depth:\the\dp0//}% \box0% energiasávban levő elektronok \setbox0\hbox{$\mathcal{T} =1$}% \message{//depth:\the\dp0//}% \box0% esetén a korábbiak alapján \setbox0\hbox{$I=(2e^2/h)\cdot V$}% \message{//depth:\the\dp0//}% \box0% áramot adnának, ami \setbox0\hbox{$\mathcal{T} <1$}% \message{//depth:\the\dp0//}% \box0% esetén értelemszerűen a transzmittálódó elektronok hányadával skálázódik, azaz \setbox0\hbox{$I=(2e^2/h)\cdot \mathcal{T} \cdot V$}% \message{//depth:\the\dp0//}% \box0%. Így egy egycsatornás, \setbox0\hbox{$\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0% transzmisszós valószínűségű szórócentrumot tartalmazó nanovezeték vezetőképessége:

\[G=\frac{2e^2}{h}\mathcal{T} .\]

Vizsgáljuk meg, hogy ez az eredmény érvényes-e véges hőmérsékleten is. A \setbox0\hbox{$\mathrm{d}I_1^+$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\mathrm{d}I_2^-$}% \message{//depth:\the\dp0//}% \box0% áramkomponensek kizárólag az 1-es illetve a 2-es elektródából származnak, így a korábbiak alapján egy \setbox0\hbox{$\mathrm{d}\varepsilon$}% \message{//depth:\the\dp0//}% \box0% energiatartományban az áramjárulékuk:

\[\mathrm{d}I_1^+(\varepsilon)=\frac{2 e}{h}\cdot f_1(\varepsilon)\mathrm{d}\varepsilon,\;\; \mathrm{d}I_2^-(\varepsilon)=\frac{2 e}{h}\cdot f_2(\varepsilon)\mathrm{d}\varepsilon.\]

Ha az áramot a szórócentrum és az 1-es elektróda közötti vezetékdarabon akarjuk kiértékelni, akkor szükségünk van a \setbox0\hbox{$\mathrm{d}I_1^-$}% \message{//depth:\the\dp0//}% \box0% áramjárulékra is, mely \setbox0\hbox{$\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0% valószínűséggel a 2-es elektródából bejövő módus transzmissziójából, \setbox0\hbox{$\mathcal{R}=1-\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0% valószínűséggel pedig pedig a az 1-es elektródából bejövő módus reflexiójából származik:

\[\mathrm{d}I_1^-(\varepsilon)=\mathrm{d}I_1^+(\varepsilon)\cdot (1-\mathcal{T}) + \mathrm{d}I_2^-(\varepsilon)\cdot \mathcal{T},\]

így a negatív és pozitív irányba haladó áramkomponensek együttes járuléka:

\[\mathrm{d}I_1=\mathrm{d}I_1^+ - \mathrm{d}I_1^- = \frac{2 e}{h} \cdot \mathcal{T} \cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\epsilon.\]

A teljes áramot integrálással kapjuk meg:

\[I=\frac{2 e}{h} \cdot \int \mathcal{T}\cdot [f_1(\varepsilon)-f_2(\varepsilon)]\mathrm{d}\varepsilon.\]

A két Fermi-függvény különbsége a \setbox0\hbox{$\mu_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% kémiai potenciálok közötti energiatartományban, illetve a két kémiai potenciál körüli \setbox0\hbox{$kT$}% \message{//depth:\the\dp0//}% \box0% energiatartományban különbözik zérustól. Feltételezve hogy ebben a tartományban a \setbox0\hbox{$\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0% transzmisszós valószínűség energiafüggetlen, és kihasználva a \setbox0\hbox{$\int \mathrm{d} \varepsilon (f_1(\varepsilon)-f_2(\varepsilon))=eV$}% \message{//depth:\the\dp0//}% \box0% azonosságot a vezetőképességre véges hőmérsékleten is a

\[G=\frac{2 e^2}{h}\cdot \mathcal{T}\]

eredményt kapjuk. Ha a transzmissziós valószínűség nem tekinthető energiafüggetlennek, akkor \setbox0\hbox{$\mathcal{T}$}% \message{//depth:\the\dp0//}% \box0%-t a releváns energiatartományra vett átlagos transzmissziós valószínűségnek kell tekinteni.

Transzmisszios matrix 2.png
5. ábra. Többcsatornás kvantumvezeték leírása \setbox0\hbox{$\hat{t}$}% \message{//depth:\the\dp0//}% \box0% transzmissziós mátrixszal

Több vezetési csatorna esetén a szórócentrum hatását egy komplex transzmissziós mátrixszal (\setbox0\hbox{$\hat{t}$}% \message{//depth:\the\dp0//}% \box0%) írhatjuk le, mely a bal oldalon az egyes csatornákban bejövő, azaz az elektródától a szórócentrum felé haladó illetve a jobb oldalon kimenő, azaz a szórócentrumtól az elektróda felé haladó módusok között teremt kapcsolatot:

\[\left|  \mathrm{ki} \right>_2=\hat{t} \left| \mathrm{be} \right>_1.\]

Megmutatható, hogy a vezetőképesség ebben az esetben

\[G = \frac{2 e^2}{h} \mathrm{Tr}(\hat{t}^\dagger \hat{t})\]

formában írható. A \setbox0\hbox{$\mathrm{Tr}(\hat{t}^\dagger \hat{t})$}% \message{//depth:\the\dp0//}% \box0% kifejezést átírhatjuk \setbox0\hbox{$\sum_{i,j} t_{j,i}^* \cdot t_{j,i} = \sum_{i,j} \mathcal{T}_{j,i}$}% \message{//depth:\the\dp0//}% \box0% formában, ahol \setbox0\hbox{$\mathcal{T}_{j,i}=|t_{j,i}|^2$}% \message{//depth:\the\dp0//}% \box0% a bal oldali i-edik csatornából a jobb oldali j-edik vezetési csatornába történő átszórás valószínűségét adja meg. Ennek megfelelően a vezetőképesség

\[G = \frac{2 e^2}{h} \sum \limits_{i,j} \mathcal{T}_{j,i}\]

formában írható. Megfelelő bázisban a probléma diagonalizálható, azaz elérhető hogy a jobb oldali i-edik csatornából csak a bal oldali i-edik csatornába tudjanak szóródni elektronok. Ekkor a rendszer a nyitott vezetési csatornák számának megfelelő \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0% db. egymástól független egydimenziós vezetéknek tekinthető, melyek vezetőképesség-járulékát egyszerűen összegezhetjük:

\[G = \frac{2 e^2}{h} \sum \limits_{i=1..N} \mathcal{T}_i.\]

A \setbox0\hbox{$\hat{t}^\dagger \hat{t}$}% \message{//depth:\the\dp0//}% \box0% operátor sajátértékeinek megfelelő \setbox0\hbox{$\mathcal{T}_i$}% \message{//depth:\the\dp0//}% \box0% transzmissziós együtthatók az i-edik sajátcsatorna transzmissziós valószínűségét adják meg.

Vezetőképesség-kvantálás kvantum-pontkontaktusban


Vegyünk egy olyan kétdimenziós kvantumvezetéket, melyben nincsenek szórócentrumok, a vezeték \setbox0\hbox{$W$}% \message{//depth:\the\dp0//}% \box0% szélessége pedig lassan (adiabatikusan) változik a hossztengely mentén (6. ábra alsó panel). A lassan változó szélességnek köszönhetően a vezeték lokálisan mindenütt jól közelíthető egy párhuzamos falú vezetékdarabbal, és a hullámfüggvények leírhatók az adott szélességhez tartozó keresztirányú állóhullámokkal, illetve hosszirányú síkhullám terjedéssel. A 6. ábra felső panele a keresztirányú állóhullámokhoz tartozó energiát ábrázolja a vezeték mentén különböző vezetési csatornákra. Egyértelmű, hogy azon vezetési csatornák tudnak csak átjutni a vezetéken (ú.n. kvantum-pontkontaktuson), melyek keresztirányú energiája a vezeték legkisebb keresztmetszeténél is a Fermi-energia alatt van.

PointContact2.png
6. ábra. Keresztirányú energiák egy adiabatikus kvantum-pontkontaktusban

A 7. ábra a vezetékben kialakuló diszperziós relációkat mutatja a vezeték két közeli tartományában. A jobb oldali panel egy kicsit keskenyebb vezetékszakaszhoz tartozik mint a bal oldali, így a nagyobb keresztirányú energia miatt a parabolikus diszperziók felfele tolódnak. Mivel a vezeték lokálisan közel transzlációinvariáns, így a hosszirányú impulzus és a \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% hullámszám csak keveset változhat miközben az elektron egy adott tartományból eljut egy másik, közeli tartományba. Egy adott vezetési csatornában \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% hullámszámmal rendelkező állapot a vezeték keskenyedése során csak úgy tud mindig kis impulzusváltozással előre haladni, ha ugyanabban a vezetési csatornában marad (lásd zöld nyíl). Más csatornába történő átszóródás, illetve visszaszóródás esetén \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% jelentősen változna. Kicsit más a helyzet, ha az előrehaladás után az adott csatorna diszperziós relációjának alja a Fermi-energia fölé kerül, azaz az elektron nem tud továbbhaladni. Ebben az esetben az a legkisebb impulzusváltozással járó folyamat, ha nullához közeli de pozitív bejövő \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0%-val rendelkező elektron ugyanazon csatorna \setbox0\hbox{$-k$}% \message{//depth:\the\dp0//}% \box0% állapotába szóródik vissza (piros nyíl).

Adiabatic2.png
7. ábra. Adiabatikus kvantumvezetékben az elektronok a saját vezetési csatornájukban haladnak előre, illetve ha a csatorna bezáródik, akkor visszaszóródnak

A fenti érvek alapján elmondható, hogy egy lassan változó szélességű kvantum-pontkontaktusban az összes olyan csatorna, melyhez tartozó keresztirányú energia a legkisebb keresztmetszetben is a Fermi-energia alatt van, \setbox0\hbox{$\mathcal{T}=1$}% \message{//depth:\the\dp0//}% \box0% valószínűséggel transzmittálódik (lásd zöld görbék a 6. ábrán), az összes többi csatorna pedig \setbox0\hbox{$\mathcal{R}=1$}% \message{//depth:\the\dp0//}% \box0% valószínűséggel reflektálódik (piros görbék a 6. ábrán), azaz a vezetőképesség a vezetőképesség-kvantum egész számú többszöröse:

\[G=\frac{2e^2}{h}M,\]

ahol \setbox0\hbox{$M$}% \message{//depth:\the\dp0//}% \box0% a legkisebb keresztmetszetben elférő keresztirányú módusok száma.

Ez a jelenség kísérletekben is megfigyelhető, elsőként van Wees és szerzőtársai,1 illetve Wharam és szerzőtársai2 demonstrálták a vezetőképesség-kvantálást kétdimenziós elektrongáz-rendszerből kialakított kvantum-pontkontaktusban. A kísérletet sematikusan a 8. ábra szemlélteti. A kétdimenziós elektrongázban két felső kapuelektróda segítségével egy keskeny csatornát alakítunk ki, a csatorna szélessége a kapuelektródákra adott feszültséggel hangolható. Először a kapuelektródák alatt teljesen kiürítjük a kétdimenziós elektrongázt, majd a kapufeszültség változtatásával folyamatosan kinyitjuk a csatornát, és egyre szélesebb pontkontaktust alakítunk ki a két elektróda között. A vezetőképesség eközben lépcsőszerűen változik, először zérusról \setbox0\hbox{$2e^2/h$}% \message{//depth:\the\dp0//}% \box0%-ra nő, majd a vezetési csatornák egyenkénti kinyílásával a vezetőképesség-kvantum egész számú töbszöröseinél látunk platókat.

2DEG contact.ogv
8. ábra. Vezetőképesség-kvantálás kvantum-pontkontaktusban

Fontos megjegyezni, hogy egy félvezetőben - így a 8. ábrán szemléltetett kvantum-pontkontaktusban - az elektronok Fermi-hullámhossza párszor tíz nanométer nagyságrendű, így az elektronok nem látják az anyag atomi felépítéséből adódó, tized nanométer nagyságrendű egyenetlenséget, hanem egy sima, közel adiabatikus csatornát látnak. Ezzel szemben fémekben a Fermi-hullámhossz a szomszédos atomok távolságával összemérhető, így egyetlen vagy pár nyitott vezetési csatornával rendelkező pontkontaktust úgy kaphatunk, ha két elektródát mondjuk egyetlen atom köt össze. Ebben az esetben az elektronok a hullámhosszukkal azonos skálán változó, az anyag atomi felépítését tükröző potenciálban mozognak (lásd 9. ábra), melyről nem várjuk hogy adiabatikus legyen, azaz vezetőképesség-kvantálást sem várunk. A kísérletek ezt alá is támasztják,3 a legtöbb fémből készült atomi méretű kontaktusban ugyan csak pár nyitott vezetési csatorna áll rendelkezésre, de az azokhoz tartozó \setbox0\hbox{$\mathcal{T}_i$}% \message{//depth:\the\dp0//}% \box0% transzmissziós sajátértékek általában tökéletlen transzmissziónak felelnek meg. Atomi mérető kontaktusok viselkedéséről röviden a Nanoszerkezetek előállítási és vizsgálati technikái fejezetben számolunk be.

PointContact.png
9. ábra. A hullámhossz skáláján változó potenciálban nem várunk vezetőképesség-kvantálást

Hivatkozások

Fent hivatkozott szakcikkek

[1] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, C. T. Foxon: Quantized conductance of point contacts in a two-dimensional electron gas, 'Phys. Rev. Lett. 60 p848–850 (1988)

[2] D A Wharam, T J Thornton, R Newbury, M Pepper, H Ahmed, J E F Frost, D G Hasko, D C Peacock, D A Ritchie and G A C Jones: One-dimensional transport and the quantisation of the ballistic resistance, Journal of Physics C: Solid State Physics 21 L209 (1988)

[3] Nicolás Agrait, Alfredo Levy Yeyati, Jan M. van Ruitenbeek: Quantum properties of atomic-sized conductors, Physics Reports 377, p81–279 (2003)

Ajánlott könyvek és összefoglaló cikkek

Ajánlott kurzusok