„Fajhő mérése” változatai közötti eltérés

A Fizipedia wikiből
34. sor: 34. sor:
 
Egy anyag belső energiája ($U$) a rajta végzett makroszkopikus munka ($W$), vagy egy másik testtel létrejött kontaktus során molekuláris szinten lezajló energia átadás ($Q$) útján változtatható meg. Ezt a tapasztalatot rögzíti a hőtan I. főtétele:
 
Egy anyag belső energiája ($U$) a rajta végzett makroszkopikus munka ($W$), vagy egy másik testtel létrejött kontaktus során molekuláris szinten lezajló energia átadás ($Q$) útján változtatható meg. Ezt a tapasztalatot rögzíti a hőtan I. főtétele:
  
 +
$$ \Delta U = \Delta Q + \Delta W $$
  
 +
ahol $\Delta U$ a belső energia megváltozása, $\Delta W$ a testen végzett makroszkopikus munka, $\Delta Q$ pedig a molekuláris mechanizmussal a testnek átadott energia, amit \textit{hőnek} (hőmennyiségnek) nevezünk. Ha egy testtel hőt közlünk (pl. elektromos fűtőtesttel melegítjük), akkor belső energiája és ezzel együtt hőmérséklete is megváltozik. A tapasztalat szerint nem túl nagy hőmennyiség közlése esetén a bekövetkező hőmérséklet-változás ($\Delta t$) egyenesen arányos a közölt hővel ($Q$), fordítottan arányos a vizsgált anyag tömegével ($m$) és függ a vizsgált anyag minőségétől is:
 +
 +
$$ \Delta t = \frac{Q}{cm} $$
  
 
</wlatex>
 
</wlatex>

A lap 2012. augusztus 28., 17:47-kori változata


Szerkesztés alatt!

A mérés célja:

  • elmélyíteni a hallgatók fajhővel kapcsolatos ismereteit,
  • megismertetni a hallgatókat a fajhőmérés két módszerével.

Ennek érdekében:

  • összefoglaljuk a fajhő mérésével kapcsolatos ismereteket, ismertetjük a keverési kaloriméterrel ill. az elektromos fűtésű kaloriméterrel történő fajhőmérést,
  • a gyakorlat során megmérjük néhány anyag fajhőjét.

Tartalomjegyzék


Elméleti összefoglaló

Egy anyag belső energiája (\setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0%) a rajta végzett makroszkopikus munka (\setbox0\hbox{$W$}% \message{//depth:\the\dp0//}% \box0%), vagy egy másik testtel létrejött kontaktus során molekuláris szinten lezajló energia átadás (\setbox0\hbox{$Q$}% \message{//depth:\the\dp0//}% \box0%) útján változtatható meg. Ezt a tapasztalatot rögzíti a hőtan I. főtétele:

\[ \Delta U = \Delta Q + \Delta W \]

ahol \setbox0\hbox{$\Delta U$}% \message{//depth:\the\dp0//}% \box0% a belső energia megváltozása, \setbox0\hbox{$\Delta W$}% \message{//depth:\the\dp0//}% \box0% a testen végzett makroszkopikus munka, \setbox0\hbox{$\Delta Q$}% \message{//depth:\the\dp0//}% \box0% pedig a molekuláris mechanizmussal a testnek átadott energia, amit \textit{hőnek} (hőmennyiségnek) nevezünk. Ha egy testtel hőt közlünk (pl. elektromos fűtőtesttel melegítjük), akkor belső energiája és ezzel együtt hőmérséklete is megváltozik. A tapasztalat szerint nem túl nagy hőmennyiség közlése esetén a bekövetkező hőmérséklet-változás (\setbox0\hbox{$\Delta t$}% \message{//depth:\the\dp0//}% \box0%) egyenesen arányos a közölt hővel (\setbox0\hbox{$Q$}% \message{//depth:\the\dp0//}% \box0%), fordítottan arányos a vizsgált anyag tömegével (\setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0%) és függ a vizsgált anyag minőségétől is:

\[ \Delta t = \frac{Q}{cm} \]