„Fizika 3 - Villamosmérnöki mesterszak” változatai közötti eltérés

A Fizipedia wikiből
21. sor: 21. sor:
 
A félév során két ZH van  és a  félév végén vizsga
 
A félév során két ZH van  és a  félév végén vizsga
  
1. ZH 25 pont <br />
+
1. ZH 25 pont, időpontja: április 2. hétfő 18:00-20:00 <br />,
2. ZH 25 pont
+
2. ZH 25 pont, időpontja: április 26. csütörtök 18:00-20:00<br />
 +
pót-ZH: május 14. hétfő 10:00-12:00
 
-----------------------------------------------------------------------------------------------------------------------
 
-----------------------------------------------------------------------------------------------------------------------
 
Vizsga 60 pont <br />
 
Vizsga 60 pont <br />
 
Közös rész 10x3 = 30 pont,(ebből minimum 14 pontot kell elérni az elégségeshez)<br />
 
Közös rész 10x3 = 30 pont,(ebből minimum 14 pontot kell elérni az elégségeshez)<br />
Egyedi rész   6x5 = 30 pont  
+
Egyedi rész   6x5 = 30 pont <br />
 +
A kérdések listája: „Közös rész” <br />
 +
"Egyedi rész - V0 kurzus”, "Egyedi rész - V3 kurzus” (megj.: ide linkek kerülnek).
 
------------------------------------------------------------------------------------------------------------------------
 
------------------------------------------------------------------------------------------------------------------------
 
2 (elégséges) 45%- = 27p- <br />
 
2 (elégséges) 45%- = 27p- <br />
33. sor: 36. sor:
 
5 (jeles) 90% - = 54 p <br />
 
5 (jeles) 90% - = 54 p <br />
 
-------------------------------------------------------------------------------------------------------------------------
 
-------------------------------------------------------------------------------------------------------------------------
Az írásbeli vizsga után (az elégtelen jegy kivételével) szóbeli vizsga lehetséges.
+
Az írásbeli vizsga után (az elégtelen jegy kivételével) szóbeli vizsga lehetséges.
A „Közös Minimum kérdések” és az „Egyedi kérdések” listája a tárgy részletes honlapján megtalálható.
+
 
Több kurzus esetén a „Közös Minimum” vizsgánként minden kurzusnál ugyanaz.  
+
Több kurzus esetén a „Közös rész” vizsgánként minden kurzusnál ugyanaz.  
Az „Egyedi részben” kurzusonként  (az előadásoknak megfelelően) eltérések lehetnek.  
+
Az „Egyedi részben” kurzusonként  (az előadásoknak megfelelően) eltérések lehetnek. <br />
 +
 
 
A félév során 7 előadás  adminisztrációs szempontból „Gyakorlatnak minősül”. Ennek kijelölése alkalmanként, minimum egy héttel az időpont előtt kerül kijelölésre. A „Gyakorlat” látogatása kötelező. Ez feltétele az „Aláírás” megszerzésének.  
 
A félév során 7 előadás  adminisztrációs szempontból „Gyakorlatnak minősül”. Ennek kijelölése alkalmanként, minimum egy héttel az időpont előtt kerül kijelölésre. A „Gyakorlat” látogatása kötelező. Ez feltétele az „Aláírás” megszerzésének.  
 
Aláírás feltétele még,  mindkét ZH teljesítése minimum 40% -ra, azaz  
 
Aláírás feltétele még,  mindkét ZH teljesítése minimum 40% -ra, azaz  

A lap 2012. február 15., 14:25-kori változata


Szerkesztés alatt!!

Tartalomjegyzék

Tárgy adatok (2011. őszi félév)

  • Előadók: Orosz László, (TTK Fizika Tanszék)
  • Tantárgykód: TE11MX01
  • Követelmények: 3/1/0/v
  • Kredit: 5
  • Nyelv: magyar
  • Félévközi számonkérések:
  • Félév végi jegy: íresbeli vizsga.
  • Keresztfélévre vonatkozó információk

Félévközi követelmények és pótlás

A félév során két ZH van és a félév végén vizsga

1. ZH 25 pont, időpontja: április 2. hétfő 18:00-20:00
, 2. ZH 25 pont, időpontja: április 26. csütörtök 18:00-20:00
pót-ZH: május 14. hétfő 10:00-12:00


Vizsga 60 pont
Közös rész 10x3 = 30 pont,(ebből minimum 14 pontot kell elérni az elégségeshez)
Egyedi rész 6x5 = 30 pont
A kérdések listája: „Közös rész”
"Egyedi rész - V0 kurzus”, "Egyedi rész - V3 kurzus” (megj.: ide linkek kerülnek).


2 (elégséges) 45%- = 27p-
3 (közepes) 60%- = 36 p-
4 (jó) 75% - = 45 p
5 (jeles) 90% - = 54 p


Az írásbeli vizsga után (az elégtelen jegy kivételével) szóbeli vizsga lehetséges.

Több kurzus esetén a „Közös rész” vizsgánként minden kurzusnál ugyanaz. Az „Egyedi részben” kurzusonként (az előadásoknak megfelelően) eltérések lehetnek.

A félév során 7 előadás adminisztrációs szempontból „Gyakorlatnak minősül”. Ennek kijelölése alkalmanként, minimum egy héttel az időpont előtt kerül kijelölésre. A „Gyakorlat” látogatása kötelező. Ez feltétele az „Aláírás” megszerzésének. Aláírás feltétele még, mindkét ZH teljesítése minimum 40% -ra, azaz 1. ZH min. 10p 2. ZH min. 10p

A TVSZ értelmében csak egy ZH pótolható. Ha valaki az egyik ZH-ból nem szerezte meg a 10 pontot, az a ZH tervben kiírt alkalommal (alanyi jogon) PZH-t írhat. Az „Aláírás” megszerzéséért, az arra jogosultak, a pótlási héten PPZH-t írhatnak

Ha valaki a fenti feltételek mellett a két ZH-n összesen minimum 30 pontot ér el, az megajánlott jegyet kap. Ha valaki ezt nem fogadja el, annak vizsgáznia kell, de a megajánlott jegye NEM ÉVÜL EL! Tehát a vizsga eredmény ismeretében ismét dönthet, hogy félévközi munkára megajánlott jegyet elfogadja-e vagy sem!



A tantárgy célkitűzése

A Fizika tantárgy célja a mérnökképzésben kettős. Egyrészt meg kell ismertetni a hallgatóságot azokkal a fizikai törvényekkel és összefüggésekkel, amelyek a konkrét műszaki problémák megoldásának az elvi hátterét adják. Másrészt ezek a törvények (és elvek) általánosságuknál fogva maghatározzák az adott kor modern természettudományos világképét is, így ennek kialakítása ugyancsak fontos feladat a mérnökképzés folyamatában. Mindez alapvetően hozzájárul a műszaki értelmiség társadalmi hitelének és tudományos presztízsének a magalapozásához.

A Fizika 2 a "Hudson-Nelson: Útban a modern fizikához" tankönyv fejezeteit követi.

A tantárgy keretében tárgyalt mechanika, a hőtan és az elektrodinamika csak az általános ismeretek közlésére szorítkozik. Itt elsősorban az axiomatikus felépítést és annak tapasztalati megalapozását kell megtanítani. A jelenségcentrikus képzést valamennyi előadásnál 15-20 perc, a tárgyhoz tartozó demonstráció segíti.

A tantárgy részletes tematikája (heti bontásban)

1. hét

KÍSÉRLETEK: Faraday-féle törvény bemutatása, nyugalmi és mozgási indukció. Lenz törvény szemléltetése lengő gyűrűvel, fémcsőben mozgó mágnessel- Transzformátorok. Zenélő teáskanna. Elektromos jelek átvitele indukciós csatolással.
1. előadás (Hudson-Nelson 749-761 oldal):
A FARADAY TÖRVÉNY ÉS AZ INDUKTIVITÁS: A Faraday törvény. A mozgási indukció. A Lenz törvény. Az örvényáramok. Az önindukció.
2. előadás (Hudson-Nelson 761-768 oldal):
A FARADAY TÖRVÉNY ÉS AZ INDUKTIVITÁS (folytatás): A kölcsönös indukció. Transzformátorok. Az önindukciós tekercs energiája. RL áramkörök (tekercs bekapcsolása és kikapcsolása).

2. hét

KÍSÉRLETEK: Cseppfolyós nitrogén diamágnessége, cseppfolyós oxigén paramágnessége. Mágneses hiszterézis. Klasszikus Ising modell szemléltetése mágnestűk rendszerével. Ferrimágneses domainek bemutatása.
1. előadás (Hudson-Nelson 775-783 oldal):
AZ ANYAG MÁGNESES TULAJDONSÁGAI: Az anyagok mágneses tulajdonságai. A mágneses térerősség és a mágneses indukcióvektor. A mágneses hiszterézis.
2. előadás (KIEGÉSZÍTÉS (mágneses adattárolás)):
KIEGÉSZÍTÉS A KÖNYVHÖZ: A mágneses adattárolás

3. hét

KÍSÉRLETEK: Állóhullámok Lecher drótpáron. Dipólus antenna sugárzása. Fénysebesség mérése (videó felvétel). Fénysebesség mérésének élő bemutatása (előkészítés alatt).
1. előadás (Hudson-Nelson 819-832 oldal):
ELEKTROMÁGNESES HULLÁMOK: Az eltolási áram. A Maxwell-egyenletek rendszere. Az elektromágneses hullámok, hullámegyenlet, polarizáció.
2. előadás (Hudson-Nelson 833-842 oldal):
ELEKTROMÁGNESES HULLÁMOK (folytatás): Elektromágneses hullámok keltése. Elektromágneses hullámok energiája és impulzusa

4. hét

KÍSÉRLETEK: Brewster polarizátor és analizátor. Teljes visszaverődés. Kísérletek mikrohullámú sütővel. Mikrohullámú optika (beszerzése tervezett).
1. előadás (KIEGÉSZÍTÉS (Fresnel egyenletek)):
ELEKTROMÁGNESES HULLÁMOK VISSZAVERŐDÉSE (KIEGÉSZÍTÉS A KÖNYVHÖZ ) : A Fresnel egyenletek
2. előadás (KIEGÉSZÍTÉS (E.m. hullámok visszaverődése)):
ELEKTROMÁGNESES HULLÁMOK VISSZAVERŐDÉSE ( KIEGÉSZÍTÉS A KÖNYVHÖZ ) (folytatás): Transzmisszió és reflexió merőleges beesés esetén. Teljes visszaverődés. Brewster szög.

5. hét

KÍSÉRLETEK: Geometriai optikai kísérletek optikai padon. Interferencia laser fénnyel. Fresnel biprizma és Fresnel tükör. Michelson interferométer bemutatása. Newton gyűrűk.
1. előadás (Hudson-Nelson 847-863 oldal és 869-898 oldal):
GEOMETRIAI OPTIKA: Hullámfrontok és fénysugarak. A Huygens-elv. Fénytörés sík felületen. Teljes visszaverődés. Fénytörés gömbfelületen. Vékony lencsék. Optikai eszközök. Lencsehibák
2. előadás (Hudson-Nelson 907-924 oldal):
FIZIKAI OPTIKA I (AZ INTERFERENCIA): Kétréses interferencia. Többréses interferencia. Interferencia vékony rétegeken. A Michelson-féle interferométer

6. hét

KÍSÉRLETEK: Diffrakció bemutatása optikai padon. Polárszőrők. A polarizáció elforgatása. Kettős törés. Fényszóródás bemutatása. Szórt fény polarizációja. Feszültség optika.
1. előadás (Hudson-Nelson 927-954 oldal):
FIZIKAI OPTIKA II. (A DIFFRAKCIÓ): Elhajlás résen. Elhajlás kör alakú nyíláson. Elhajlás rácson. A röntgen-diffrakció. A Fresnel-féle diffrakció. Kör alakú nyílások és akadályok
2. előadás (Hudson-Nelson 959-972 oldal):
A POLÁROS FÉNY: A polárszűrő. Polarizáció visszaverődéskor és szóráskor. A kettőstörés. A fázistoló lemezek és a cirkuláris polarizáció. Az optikai aktivitás. Interferenciaszínek és a feszültségoptika.

7. fét

KÍSÉRLETEK: Fényelektromos jelenség. Fényspektrum analizálás különböző fényforrások esetén.
1. előadás (Hudson-Nelson 1019-1027 oldal):
A HŐMÉRSÉKLETI SUGÁRZÁS: A feketetest sugárzásának spektruma. A feketetest sugárzás különböző értelmezései. Planck elmélet. Termikus fényforrások
2. előadás (Hudson-Nelson 1027-1039 oldal):
A SUGÁRZÁS KVANTUMOS TERMÉSZETE: A fényelektromos hatás. A Compton-effektus és a párkeltés. Az elektromágneses sugárzás kettős természete.

8. hét

KÍSÉRLETEK: Hologramok bemutatása. Optikai szál modell. Lézertípusok bemutatása. Hullámvezetők és becsatolási kísérletek.
1. előadás (KIEGÉSZÍTÉS (Holográfia. Optikai adattárolás. Tk: 851-853 oldal)):
KOHERENS FÉNYFORRÁSOK (KIEGÉSZÍTÉS A KÖNYVHÖZ): A lézerműködés alapjai. Lézertípusok. Holográfia. Optikai adattárolás.
2. előadás (KIEGÉSZÍTÉS ( Diszperzió. Hullámvezetés. Optikai szálak. Tk:876.old.)):
AZ OPTIKAI KOMMUNIKÁCIÓ ALAPJAI (KIEGÉSZÍTÉS A KÖNYVHÖZ): A fázis és csoportsebesség. A diszperzió. A hullámvezetés mechanizmusa. Egy- és több-módusú optikai szálak. Nemlineáris jelenségek

9. hét

KÍSÉRLETEK: Interferencia létrehozása elektronokkal.
1. előadás (Hudson-Nelson 1045-1057 oldal):
A RÉSZECSKÉK HULLÁMTERMÉSZETE: Az atommodellek. A korrespondencia-elv. A de Broglie-hullámok. A Davisson-Germer-kísérlet
2. előadás (Hudson-Nelson 1058-1071 oldal):
A RÉSZECSKÉK HULLÁMTERMÉSZETE (folytatás): A hullámmechanika. Az alagúteffektus. A határozatlansági elv. A komplementaritási elv

10. hét

KÍSÉRLETEK: Franck-Hertz kísérlet (az atomi energiaszintek kimutatása).
1. előadás (Hudson-Nelson 1075- …… oldal):
ATOMFIZIKA: A Schrödinger-féle hullámegyenlet. A hullámfüggvény fizikai jelentése. A hidrogén-atom hullámfüggvényei.
2. előadás (Hudson-Nelson ……- 1089 oldal):
ATOMFIZIKA (folyatatás): A hidrogénatom kvantumállapotai. Az elektron-spin és a finomszerkezet. A spin-pálya csatolás.

11. hét

KÍSÉRLETEK: Kontakt potenciál. Seebeck effektus. Peltier effektus. Piezó effektus.
1. előadás (Hudson-Nelson 1089-1094 oldal):
ATOMFIZIKA (folyatatás): A Pauli-féle kizárási elv és az elemek periódusos rendszere. A röntgensugarak.
2. előadás (KIEGÉSZÍTÉS (Fémek elmélete. Fermi-Dirac statisztika)):
BEVEZETÉS A SZILÁRDTESTFIZIKÁBA (KIEGÉSZÍTÉS A KÖNYVHÖZ): Fémek szabadelektron elmélete. Fermi-Dirac statisztika.

12. hét

KÍSÉRLETEK: Kísérletek LED-el: energia sávszélesség mérése, hőmérsékletfüggés. Kísérletek szupravezetőkkel: lebegtetés, ideális diamágnesesség kimutatása.
1. előadás (KIEGÉSZÍTÉS (Félvezetők és szigetelők. Lézerek, erősítők, detektorok)):
SZILÁRDTESTEK SÁVSZERKEZETE (KIEGÉSZÍTÉS A KÖNYVHÖZ )(kvalitatív leírás): Félvezetők, szigetelők. Fény kibocsátó diódák (LED). Félvezető lézerek Optikai erősítők és detektorok.
2. előadás (KIEGÉSZÍTÉS (Szupravezetés)):
A SZUPRAVEZETÉS (KIEGÉSZÍTÉS A KÖNYVHÖZ): Kísérleti eredmények BCS elmélet alapgondolata (kvalitatív tárgyalás). Alkalmazások

13. hét

KÍSÉRLETEK: Demonstrációs filmek bemutatása (beszerzés alatt)
1. előadás (KIEGÉSZÍTÉS (Alagút effektus az elektronikában)):
KVANTUMMECHANIKA A MODERN ELEKTRONIKÁBAN (KIEGÉSZÍTÉS A KÖNYVHÖZ): Az algút-effektus az elektronikában. STM, AFM. Spintronikai eszközök
NMR, MRI.
2. előadás (1101- 1108. oldal KIEGÉSZÍTÉS (Cseppmodel):
ATOMMAGFIZIKA: Az atommag leírása. Az atommag tömege és kötési energiája. Az atommag cseppmodellje (kiegészítés a könyvhöz).

14. hét

KÍSÉRLETEK: Működő ködkamra bemutatása.
1. előadás (Hudson-Nelson 1109- 1134 oldal):
ATOMMAGFIZIKA (folytatás): Radioaktív bomlás és felezési idő. A radioaktív bomlás fajtái. A atommag hatáskeresztmetszete. Magreakciók. Az atomenergia jelentősége (atomerőművek, Paks). A fúziós energiatermelés lehetőségei.
2. előadás (Hudson-Nelson 1135- 1146 oldal):
A RÉSZECSKEFIZIKA TÖRTÉNETE ÉS JELENLEGI ÁLLÁSA: Új korszak kezdete. Színek (Colors). Ízek (Flavors). QED és QCD. Színkorlátok Gyenge folyamatok, generációk, leptonszám. Egyesítés és a jövő. Kozmikus összefüggések (Részecskefizika és kozmológia)