Fizika 3 - Villamosmérnöki mesterszak

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Mihaly (vitalap | szerkesztései) 2018. december 10., 15:43-kor történt szerkesztése után volt.


Tartalomjegyzék

A tárgy adatai

Előadó: Mihály György(TTK Fizika Tanszék)
Tantárgykód: TE11MX33
Nyelv: magyar

Időpont: kedd, csütörtök 14:15 - 16:00
Helyszín: F29 terem.

2019. tavaszi félév időbeosztása

A félév első előadása: február 5 (kedd) 14:15-16:00.

A jegyzetelést elősegítő kivonatok letölthetők az előadás címén keresztül (jelszó ismeretében). Ezeket érdemes kinyomtatni, majd az előadáson erre jegyzetelni. Az alábbi tematikában az előadás címek mellett szerepelnek a témához kapcsolódó fontosabb fogalmak, számolási gyakorlatok valamint az előadáson ismertetésre kerülő eszközök és alkalmazások. A kivonatokon csillag jelzi azokat a részletesebb levezetéseket, amelyek gondolatmenetét érdemes megérteni, de nem lesznek visszakérdezve a zárthelyiken.

február 6. (kedd) 14:15 F29 terem
Elektromágneses hullámok: szuperpozíció elve; interferencia; fotoeffektus; hőmérsékleti sugárzás; foton fogalma, foton detektálásának valószínűsége, fotoemissziós spektroszkópia.
február 9. (péntek) 14:15 F29 terem
Lézerek: spektrumok (kísérlet); atomok gerjesztése, Einstein-egyűtthatók, indukált emisszió, optikai erősítés, lézerfény tulajdonságai, lézer alkalmazások

február 13.
Elektronok hullámtermészete: a hullámfüggvény valószínűségi értelmezése; képalkotás és diffrakció elektronmikroszkóppal; szabad részecske hullámfüggvénye; operátorok fogalma; hullámcsomag.
február 16.
Elektronok potenciáltérben: elektronok hullámhosszának szabályzása; elektron-hullámok keltése (Fowler-Nordheim alagúteffektus); transzmissziós és pásztázó elektronmikroszkóp (TEM és SEM), elektron-litográfia; Schrödinger-egyenlet.

február 20.
Alagúteffektus: Alagutazás potenciálgáton keresztül, pásztázó alagútmikroszkóp (STM) detektálási árama, (SQUID), Flash-memória, kísérlet: alagútáram pont-kontaktusban, molekuláris elektronika
február 23.
Fizikai mennyiségek várható értéke: várható értéke és szórás; hullámcsomag; határozatlansági reláció

február 27.
Operátorok alkalmazása a kvantummechanikában: felcserélési reláció; harmonikus oszcillátor; a harmonikus oszcillátorhoz kapcsolódó kvantum-jelenségek: hőmérsékleti sugárzás; fajhő, Landau-nívók, kvantum-kaszkád lézer.
március 2.
Kristályok szerkezete, szimmetriák: Diszkrét transzlációs szimmetria, rács és reciprok rács, szimmetriaműveletek, Neumann-elv és alkalmazása

március 6.
Szerkezetmeghatározás-I: rugalmas szórás elmélete: kristálysíkok, Bragg-feltétel, Laue-módszer (amplitudók fázishelyes összegzése), szórt nyaláb intenzitása
március 9.
Szerkezetmeghatározás-II: Röntgen-, neutron- és elektron-szórás: Ewald-szerkesztés; szinkrotron, szabad-elektron lézer, neutron-források, Röntgen-holográfia, kvázikristályok, amorf anyagok
március 10.
Kristályok dinamikája: rácsrezgések, lineáris lánc rezgései, a fonon fogalma, szilárd testek fajhője

március 13.
Kvantummechanikai rész + kristályok összefoglalója

március 20.
Konzultáció
március 23.
Fémek szabad-elekton modellje:Sommerfeld-modell, Fermi-Dirac statisztika, termikus és mágneses tulajdonságok, Pauli-szuszceptibilitás kiszámítása, kvantum-statisztikák

március 27.
Szilárd testek sávszerkezete: szoros kötésű közelítés, fémek és félvezetők sávszerkezete, effektív tömeg, elektron és lyukvezetés

április 10.
Fémek - félvezetők: Sávok betöltése, elektronok-lyukak, félvezetők töltéshordozói, adalékolt félvezetők, vezetőképesség
április 13.
Ballisztikus elektron-transzport: félvezető heteroátmenetek, tervezett tulajdonságú kétdimenziós elektrongáz, extrém nagy mobilitású elektronok, vezetőképesség kvantum, ballisztikus elektron terjedést kimutató kísérletek

április 17.
Mezoszkopikus transzport: koherens elektronállapotok, Landauer-formalizmus, s-mátrix technika; memrisztorok nanométeres méretskálán
április 20.
Makroszkopikus elektron-transzport: Boltzmann-egyenlet, fémek vezetőképessége és optikai tulajdonságai

április 24.
Félvezető eszközök, kvantum-pötty: MOSFET működési elve; félvezető lézer/LED/napelem; kvantum-pötty, egyelektron tranzisztor
április 27.
Szenzorok: piezo, MEMS és mágneses szenzorok; rezgővillás kísérlet; MEMS-giroszkóp működési elve, lézeres távolságmérés, SONAR, RADAR, LIDAR, Lock in detektálás (Phase Sensitive Detection)

május 4.
Szupravezetés: zérus ellenállás, Meissner-effektus, első és másodfajú szupravezetők, szupravezető mágnesek (CERN, MRI,NMR), magas hőmérsékletű szuparavezetők (MAGLEV)

május 8.
Mágnesség, spintronika: mágnesség rács-modellje; kolosszális mágneses ellenállás; ferromágnesség sáv-modellje; a mágnesezettség mérése; spin-szelep, GMR, STT MRAM, spin-szelep működése (Landauer-formalizmus).
május11.
Szilárdtestfizika rész összefoglalója

május 15.
Nanoelektronika: Meghívott előadó: Csonka Szabolcs. Qbit, kvantum számítógép, grafén-elektronika
május 18.
ZH-2. 14:00-16:00. Névsor szerint: A-M között F29 terem, N-Z között E1C terem.



Számonkérések

Félévközi zárthelyi dolgozatok:

A félév során két zárthelyi dolgozat lesz.

A zárthelyi dolgozatok egyenként 40 pont feletti eredmény esetén eredményesek (a maximálisan elérhető pontszám egy zárhelyinél 100 pont).
Az aláírás feltétele mindkét ZH teljesítése minimum elégségesre (40 pont).
Két sikertelen zárthelyi dolgozat esetén félévközi jegy nem szerezhető.

Megajánlott jegy:
Ha valaki a két évközi zárthelyi dolgozat mindegyikén (külön-külön) minimum 50 pontot ér el, akkor megajánlott jegyet kap.
Az előadásokon jelenléti ívet vezetünk. Azok esetében, akik a foglalkozások legalább 70%-án jelen voltak, a megajánlott jegy megállapításánál a két zárthelyi átlagához 10 pontot hozzáadunk, egyébként a zárthelyik pontszámának átlagával számolunk.
A megajánlott jegyek ponthatárai:
2 (elégséges) : 40 - 55
3 (közepes) : 55 - 70
4 (jó) : 70 - 85
5 (jeles) : 85 -
(az aláhúzott érték a jegyhez tartozó alsó határ)
A megajánlott jegynél legalább 70 pontos eredményt elérőknek szóbeli vizsga lehetséges a jeles érdemjegyért (a 85 pont feletti eredményt elérők szóbeli vizsga nélkül megkapják a jeles érdemjegyet).


Félév végi jegy: írásbeli vizsga

A vizsgakérdések valamennyi előadás tartalmára kiterjednek. Az írásbeli vizsga után - a legalább 70 pontos eredményt elérőknek - szóbeli vizsga lehetséges a jeles érdemjegyért (a 85 pont feletti eredményt elérők szóbeli vizsga nélkül megkapják a jeles érdemjegyet).
Az írásbeli dolgozat értékelése:
2 (elégséges) : 40 - 55
3 (közepes) : 55 - 70
4 (jó) : 70 - 85
5 (jeles) : 85 -
(az aláhúzott érték a jegyhez tartozó alsó határ)

Ha valaki a két évközi ZH-n egyenként minimum 50 pontot ér el, akkor megajánlott jegyet kap.
Az előadásokon jelenléti ívet vezetünk. Azok esetében, akik a foglalkozások legalább 70%-án jelen voltak, a megajánlott jegy megállapításánál a két zárthelyi átlagához 10 pontot hozzáadunk, egyébként a zárthelyik pontszámának átlagával számolunk. A megajánlott jegynél legalább 70 pontos eredményt elérőknek szóbeli vizsga lehetséges a jeles érdemjegyért (a 85 pont feletti eredményt elérők szóbeli vizsga nélkül megkapják a jeles érdemjegyet).


A tantárgy célkitűzése

A tárgy célja a korszerű természettudományos világszemlélet kialakítása; a modellalkotási készség fejlesztése. Olyan egyetemi szintű fizikai ismeretek elsajátítása, amely feltétlenül szükséges a szaktárgyak megalapozásához valamint elengedhetetlen a XXI. századi technika világában eligazodni és alkotni akaró mérnök munkájához.

Ezen általános célokon belül a tantárgy további fontos célja:
- a kvantummechanika alapjainak megismertetése, a klasszikus fizika korlátainak felismerése;
- a modern anyagtudomány és a nanotechnológia alapját képező szilárdtestfizikai kvantumjelenségek leírása;
- a kvantummechanikai elvekre épülő eszközök és berendezések működésének bemutatása.

Mindez hozzájárul a villamosmérnöki szakma természettudományos hátterének a megismeréséhez, és kellő alapot nyújt a modern elektronikai eszközökben lezajló folyamatok megértéséhez.