Gamma spektroszkópia

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen HollosCs (vitalap | szerkesztései) 2013. március 20., 14:51-kor történt szerkesztése után volt.

Mérésleírás pdf formátumban

SZERKESZTÉS ALATT! Kérjük egyelőre mindenki a fenti pdf mérésleírást használja a felkészüléshez!



Tartalomjegyzék



Bevezetés

A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás energiájának, intenzitásának, szögeloszlásának mérésével foglalkozik. A jelen laborgyakorlat lehetővé teszi az elméleti előadásokon hallott nukleáris méréstechnikai ismeretek elmélyítését és azok gyakorlati alkalmazásainak készségszintű elsajátítását. A gyakorlaton részt vevők betekintést nyernek a félvezető detektorra alapozott gamma-spektrometria alapjaiba, megismerik annak fontosabb eszközeit és a gamma-spektrumok kiértékelésének elemi lépéseit.

A gyakorlat alapvető mérőeszköze egy HPGe (High Purity Germanium) félvezető detektor, amely különböző mintákban lévő gamma-sugárzó izotópok azonosítására, azok abszolút és fajlagos aktivitásának meghatározására használható. A gamma spektrometria gyakorlati jelentőségét az adja, hogy számos területen alkalmazható a gamma-sugárzó izotópokkal kapcsolatos valamilyen analitikai vagy magfizikai probléma megoldásában. A magfizikai vonatkozású tudományos kutatásban a leggyakrabban az atommag energianívói energiájának és élettartamának meghatározására, izotópok bomlási sémáinak felderítésére, a belső konverziós együttható értékének mérésére, gamma-gamma szögkorreláció vizsgálatára stb. szokták alkalmazni.

A közvetlen gyakorlati célú hasznosítási területek a neutronaktivációs analízis, orvosi-, ipari-, mezőgazdasági nukleáris vonatkozású vizsgálatok a természetes és mesterséges radioizotópok analízisére, a környezet- és sugárvédelem gamma spektroszkópiai mérésekkel vizsgálható problémáinak megoldásában.

A gamma-spektrometriai gyakorlat során az alábbiakkal lehet megismerkedni:

  • gamma-sugárzás és az anyag közötti kölcsönhatások megfigyelése
  • gamma-spektrométer felépítése, az egyes részegységek spektroszkópiai jellemzői
  • HPGe detektorok jelfeldolgozó elektronika alkalmazása a gamma-spektrometriában
  • gamma-spektrumok kvantitatív kiértékelése
  • mérési adatok feldolgozása, azok bizonytalanságának becslése

Elméleti összefoglaló

Fotoeffektus, szórás, párkeltés, emisszió és abszorpció:

Az atommagok alfa- és béta-bomlásai, a maghasadás valamint a magreakciók gyakran a leánymag gerjesztett állapotához vezetnek. A magfolyamat során keletkezett atommag a gerjesztett állapotból általában egy vagy több gamma foton kibocsátásával tér vissza az alapállapotába. A radioaktív atommag bomlása során emittált gamma fotonok energiája, intenzitása vagy szögeloszlása információt hordoz a sugárzó atommag belső felépítéséről, szerkezetéről. Egy atommag több legerjesztődési folyamata is lehet, amit az ún. bomlássémával szoktak ábrázolni (1. ábra). Az 1. ábrán egy A tömegű és Z rendszámú atommag energianívóit a függőleges tengelyen, míg a vízszintes tengelyen a rendszámot ábrázoltuk.

Gamma_1

A különböző bomlási útvonalakhoz más-más átmeneti valószínűség tartozik, amit az adott béta vagy gamma-emisszió gyakoriságának nevezünk. A gyakorisági értékek az adott atommagra jellemző olyan nukleáris állandók, amik azt adják meg, hogy ha az adott magból 100 db elbomlik, akkor nagy valószínűséggel hány esetben emittál a mag adott energiájú béta-részecskét vagy gamma-fotont. A gamma-sugárzás és az anyag kölcsönhatása három alapvető folyamattal jellemezhető: fotoeffektus, Compton-szórás és párkeltés. Ezt a három alapvető fizikai folyamatot más elméleti tárgyak már részletesen elemezték ezért a jelen leírásban csak egy rövid áttekintést adunk.

A fotoeffektus során a gamma-foton átadja a teljes energiáját egy atom valamelyik kötött elektronjának, amely szabaddá válik, miközben az elektronburokban egy elektronhiányos állapot jön létre. A detektor anyagában lejátszódó fotoeffektus hatására a félvezető belsejében olyan elektronok lesznek jelen, amelyek elegendő energiával rendelkeznek, ahhoz, hogy részt vegyenek az elektromos vezetési folyamatban. A jelenség hatáskeresztmetszete az alábbi (1) formulával írható le, ahol Z az anyag rendszáma, N az anyag atomsűrűsége:

\[ \sigma_{f} \sim NZ^{5}(E_{\gamma})^{3,5} \]
(1)

A Compton-szórás során a foton az energiájának (E\setbox0\hbox{${\gamma}$}% \message{//depth:\the\dp0//}% \box0%) csak egy részét adja át a szabad vagy az E\setbox0\hbox{${\gamma}$}% \message{//depth:\the\dp0//}% \box0% energiához képest kis kötési energiával rendelkező atomi elektronnak. A folyamat során a foton energiája és iránya megváltozik. A szórt foton energiájának nagyságát a (2) egyenlet írja le, ahol 0 < \setbox0\hbox{${\vartheta}$}% \message{//depth:\the\dp0//}% \box0% < 180° a szórt foton iránya a primer foton irányához képest, m az elektron nyugalmi tömege, c a fénysebesség.

\[ E_{\gamma} = \frac {E_{\gamma}} {\frac {E_{\gamma}}{mc^2}}(1-cos\vartheta)+1 \]
(2)

A folyamat hatáskeresztmetszetét a Klein-Nishina formula írja le a (3) egyenlet szerint.

\[ \sigma_{KN} \sim \frac {NZ} {E_{\gamma}} ln (\frac {2E_{\gamma}}{mc^2}+0,5) \]
(3)

A fenti szórási folyamatban a meglökött elektron energiája egy meghatározott energiatartományba esik a \setbox0\hbox{${\vartheta}$}% \message{//depth:\the\dp0//}% \box0% szög értékétől függően, aminek következménye a gamma spektrumokban megjelenő Compton-él és plató. Például a 60Co bomlása során keletkező 1333 keV energiájú fotonhoz tartozó Compton-él energiája 1119 keV.

A párkeltés folyamata során egy gamma-foton a detektor anyaga egy atommagjának erőterében elektron-pozitron párrá alakulhat abban az esetben, ha a foton energiája nagyobb, mint a 2mc2 = 1.022 MeV. Ha E\setbox0\hbox{${\gamma}$}% \message{//depth:\the\dp0//}% \box0% > 1.022 MeV feltétel teljesül, azaz a foton energiája nagyobb, mint a két részecske nyugalmi tömegeinek összege, akkor a foton maradék energiája az elektron és pozitron kinetikus energiájára fordítódik. A pozitron később egyesül egy elektronnal, aminek eredményeképpen annihiláció következik be. A folyamat során két 0.511 MeV energiájú foton jelenik meg a detektorban. A párkeltés hatáskeresztmetszete az alábbi (4) kifejezéssel arányos:

\[ \sigma_{p} \sim NZ^{2}({E_{\gamma}} - 2mc^{2}) \]
(4)

A fenti három alapvet_ kölcsönhatási folyamat eredménye a gamma sugárzás abszorpciója, aminek egy gamma nyaláb intenzitására gyakorolt hatását az (5) egyenlettel írhatjuk le, ahol \setbox0\hbox{${\mu}$}% \message{//depth:\the\dp0//}% \box0% az abszorpciós együttható, x az abszorbeáló anyag rétegvastagsága, I0 a kezdeti, I az abszorbens réteg elhagyása utáni intenzitás.

\[ I = I_{0}e^{-\mu x} \]
(5)

A leggyakrabban alkalmazott félvezető-detektor alapanyagok a Ge és Si, ezért a 2. ábrán a fenti három alapvető fizikai folyamat hatáskeresztmetszetét ezekre az anyagokra adjuk meg a fotonenergia függvényében.

Megfigyelhető, hogy a fotoeffektus és a párkeltés hatáskeresztmetszete több nagyságrend értékben változik, ellentétben a Compton-szórás hatáskeresztmetszetével. Mindhárom folyamat eredménye olyan elektronok megjelenése a detektor anyagában, amelyek elegendő energiával rendelkeznek, ahhoz hogy az elektromos vezetési folyamatban részt vegyenek. Összegyűjtve az így létrehozott töltéshordozókat a detektor elektromos kimenetén feszültség- vagy áramimpulzus jelenik meg, melynek amplitúdója arányos az abszorbeált gamma-foton energiájával. A spektrométer elektronikus és digitalizáló egységeinek feladata ezen impulzusok paramétereinek számszerűsítése és ez által a detektált gamma spektrum energia-eloszlásának megjelenítése.

Gamma_2

A gamma-spektrometria eszközei

Detektor

A nukleáris spektroszkópiában két fajta félvezető-detektor a legelterjedtebb, a Ge és a Si alapanyagú egykristályok. A Si detektorok elsősorban béta és nehéz töltött részecskék mérésére alkalmasak. Az egykristályos Ge anyagban kb. 3 eV abszorbeált energia szükséges egy elektron-lyuk pár létrehozásához. Ez az érték kb. tizede a gáztöltésű detektor és századrésze a szcintillációs detektorok hasonló értékeihez képest. Így, azonos energia átadásával a félvezető-detektorban lényegesen több töltéshordozó keletkezik, mint a másik két detektorban. Mivel a nagyobb számú töltéshordozó számának relatív ingadozása lényegesen kisebb, ami a detektoranyagban abszorbeált foton-energia meghatározását sokkal pontosabbá teheti. Ez azt eredményezi, hogy a félvezető detektorokkal lényegesen jobb energiafelbontást lehet elérni, mint az egyéb detektortípusokkal. A kis sűrűségű, illetve relatíve kevés detektoranyagot tartalmazó gáztöltésű detektorok hatásfoka gamma- sugárzásra alacsony, míg a Ge nagyobb rendszáma és sűrűsége nagyobb detektálási hatásfokot eredményez, ami ideálissá teszi a gamma-sugárzás detektálására. A Si rendszáma kisebb, ezért elsősorban alacsony energiájú (3-60 keV) gamma- ill. Röntgen-sugárzás érzékelésére alkalmazzák.

A fentiekben részletezett méréstechnikai tulajdonság oka a félvezetőkben lejátszódó szilárdtestfizikai folyamatokkal magyarázható. Egy félvezető egykristályban az atomokhoz kötött elektronok által betöltött legfelső energia-sáv az u. n. valencia sáv, míg az atomokhoz nem kötött, szilárd félvezető belsejében szabadon mozogni képes elektronok energiasávja az u. n. vezetési sáv között található a tiltott sáv, amelyben nincs elektronállapot.

A tiltott sáv szélessége a félvezető anyagokban 1-2 eV. Radioaktív sugárzás, hő vagy fény hatására a valencia sáv egyes elektronjai átkerülhetnek a vezetési sávba és így részt vehetnek az elektromos vezetésben. Ha egy gamma-foton kölcsönhatásba lép a kristály elektronjaival, akkor átadja azoknak energiáját, ezáltal az elektronok a valencia sávból a vezetési sávba kerülnek. A gerjesztett elektronok egy elektronhiányos állapotot hagynak maguk után a valenciasávban. Egy ilyen elektron-lyuk pár keltéséhez Ge-ban kb. 2.8 eV, Si-ban 3.6 eV energia szükséges.

A detektorra kapcsolt feszültség hatására létrejövő kb. 1000 V/cm-es elektromos térerősség a töltéshordozók egyirányú áramlását idézi elő a detektor elektródáira. Az így létrejövő töltésekből álló impulzust a detektorhoz kapcsolt áramkörök alakítják tovább. Fontos, hogy az alkalmazott félvezetők anyagának fajlagos ellenállása kb 108 \setbox0\hbox{${\Omega}$}% \message{//depth:\the\dp0//}% \box0%cm, mivel ellenkező esetben a saját áramból eredő zaj igen nagy lenne. Mivel elektronok eljuthatnak a vezetési sávba úgy is, hogy energiájukat véletlenszerűen, a környezetből abszorbeált termikus fotonokból nyerik, ez által növelhetik a spektrométer áramát olyan módon, hogy annak oka nem gamma fotonok detektálása, azaz a jelenség zajt eredményez. A termikus zaj csökkentése érdekében a félvezető detektorokat alacsony hőmérsékleten (kb. 77°K) cseppfolyós nitrogénnel hűtve kell üzemeltetni. Ma már vannak Peltier-effektust alkalmazó hűtéssel felszerelt, valamint szobahőmérsékleten működő félvezető detektorok is (SDD = Silicon Drift Detector). A HPGe detektorok technikai-geometriai kialakítására számos egyedi megoldást dolgoztak ki a felhasználás céljától függően. A leggyakrabban alkalmazott geometriai elrendezések a 3. ábrán láthatóak. További részleteket a témával foglalkozó, idézett irodalomban illetve a Nukleáris méréstechnika tárgy keretein belül lehet találni. A jelen gyakorlat során egy p-típusú koaxiális detektort fogunk használni.

Gamma_3

Elektronikus jelfeldolgozó egységek

A gamma-spektrométerek egyes elektronikus egységeinek kiválasztását az adott nukleáris detektálási feladat szabja meg. Az előerősítő feladata a detektor és a főerősítő közötti illesztés illetve a jel erősítése annak továbbítása előtt oly módon, hogy a jel/zaj arány minél kedvezőbb legyen. A főerősítővel szemben támasztott követelmény a nagyfokú linearitás és időbeni stabilitás. Az alapszint helyreállító (base line restorer) nagy számlálási sebességek esetén fellépő alapszint-csökkenés mértékét (jelamplitúdó-változást) mérsékli. Az expander (nyújtó) erősítő a spektrum bizonyos részének széthúzását teszi lehetővé, abban az esetben, ha a spektrum struktúrájának részletesebb vizsgálatára van szükség. A stretcher (jelnyújtó) az analizátor bemenetének (ADC: analóg digital converter) egy elektronikailag kedvezőbb jelformát biztosít. A pulser vagy impulzusgenerátor egy stabil frekvenciával és amplitúdóval rendelkező impulzus-generátor a jelalak vizsgálathoz, illetve az automatikus holtidő-korrekcióhoz használatos. A sokcsatornás amplitúdó-analizátort két különböző típusú ADC-vel szokták alkalmazni: a lassúbb változat a Wilkinson típusú ADC, míg a gyorsabb a jelanalízis szukcesszív approximációján alapszik. A nagyfeszültségű tápegység biztosítja a detektor működéséhez szükséges feszültséget (2-5000 V). Félvezető-detektorok esetében nem kívánalom a nagy stabilitás, csak az alacsony elektronikus zaj. A kisfeszültségű tápegység (\setbox0\hbox{${\pm}$}% \message{//depth:\the\dp0//}% \box0%6, \setbox0\hbox{${\pm}$}% \message{//depth:\the\dp0//}% \box0%12, \setbox0\hbox{${\pm}$}% \message{//depth:\the\dp0//}% \box0%24 V) a különböző elektronikus egységek (erősítők, stb.) tápfeszültség forrása. A jelen gyakorlat során egy DSP jelfeldolgozó egységet használunk, amely elvégzi, a fentiekben felsorolt funkciókon kívül az analóg jelek digitalizálását és az egyes csatornatartalmakat közvetlenül a PC memóriájába tölti.

A gamma-spektrumok kiértékelése

A 4. ábrán egy monoenergetikus gamma-sugárzásról felvett spektrum elvi alakja látható. A teljesenergia-csúcs megjelenése elsősorban a fotoeffektus révén következik be, ezért fotocsúcsnak is szokták nevezni. Az 511 keV energiánál jelentkező ún. annihilációs csúcs vagy a párkeltési folyamat következménye, vagy egy pozitív béta-bomló izotóptól származik. A visszaszórási csúcs a detektor burkolatán, a mérőhely árnyékolásának belső falán szóródott fotonok detektálásának következménye. A gamma spektrumokban a csúcsok alatt található folytonos háttér nagysága, és ezzel egy adott izotóp kimutathatósági határa csökkenthető a szóró felületek távolabb helyezésével és az anyaguk rendszámának csökkentésével. A visszaszórási-, annihilációs-, stb. csúcsok a Compton kölcsönhatás miatt kialakuló ún. Compton tartományra szuperponálódnak.

A spektrum kiértékelésének alapvető célja az, hogy a teljesenergia-csúcsok területét meghatározzuk. Ehhez a következő lépéseket kell tenni:

  • a spektrum energia-kalibrációja
  • csúcskeresés
  • a csúcsokhoz tartozó izotópok azonosítása egy izotópkönyvtár alapján
  • az átlapoló csúcsok matematikai szétválasztása és a spektrum matematikai függvényekkel történő illesztése
  • csúcsterületek kiszámítása
  • az egyes csúcsokhoz tartozó izotópok aktivitásának/fajlagos aktivitásának számítása

A fenti feladatokat, a mérést vezérlő Genie-2000 szoftverrel végezzük, amely alapvető funkcióinak rövid útmutatója és használata a jelen jegyzethez mellékelt leírásban található.

Gamma_4

A gamma-spektrumok kiértékeléséhez szükséges fogalmak és azok számítása

A gamma-spektrométerek kvantitatív jellemzéséhez néhány alapvető paramétert kell definiálni. A detektor energia-felbontóképessége egy olyan, a gammafotonok energiától függő paraméter, amely megadja egy adott energiájú gamma csúcs félértékszélességét (FWHM= full width at half maximum) a csúcs centrumához tartozó energia függvényében. A gamma csúcsokat matematikailag egy Gauss-függvénnyel lehet leírni a (6) egyenlet szerint. A görbe kiszélesedését jellemezni lehet a maximum érték feléhez tartozó csúcsszélességgel (FWHM).

\[ y_{i}= \frac{y_{0}}{\sigma \sqrt {2\pi}} exp \Bigg(\frac {(E-E_{0})^{2}}{2\sigma^{2}}\Bigg) \]
(6)

A csúcsok kiszélesedésének több oka is van, amelyek közül a jelentősebb járulékot adó tag a detektorban lejátszódó fizikai folyamatok, illetve a jelfeldolgozó elektronikus egységek által keltett zaj miatt következik be. Az \setbox0\hbox{${\Large{f}}$}% \message{//depth:\the\dp0//}% \box0% értéke egy adott detektor esetén függ a gamma-energiától (annak növekedésével javul) és valamelyest a számlálási sebességtől (ennek növekedésével romlik). Ge detektorok esetében a \setbox0\hbox{${\Delta}$}% \message{//depth:\the\dp0//}% \box0%E \setbox0\hbox{${\approx}$}% \message{//depth:\the\dp0//}% \box0% 1.8 - 2.7 keV közötti értékű 1333 keV (60Co) gamma energiánál.

A félértékszélesség energiafüggését számos tényező befolyásolja, aminek eredményeképpen az FWHM az alábbi összefüggésben van a detektált gamma-fotonok energiájával. Az FWHM értékét befolyásoló folyamatokról bővebb ismereteket az [1] és [2] irodalomban lehet megtalálni. A félértékszélesség energiafüggését a Genie-2000 szoftver a (7) összefüggéssel közelíti

\[ FWHM = a+b \sqrt{E} \]
(7)

ahol a k és r konstansok és E a gamma-fotonok energiája.

Az abszolút vagy teljesenergia-csúcs hatásfok értéke azt adja meg, hogy a sugárforrásból kibocsátott, adott energiájú összes gamma fotonból hányat regisztrál a detektor a teljesenergia-csúcsban. A hatásfok számszerű definícióját a (8) összefüggéssel lehet megadni, ahol N a teljesenergia-csúcs területe, amit egy, a mérés időpontjában az A aktivitású sugárforrás gamma-sugárzásának detektálásával kaptunk, mt a mérés időtartama és k a gamma-gyakoriság értéke.

\[ \eta = \frac{N}{t_{m}Ak} \]
(8)

Az abszolút hatásfok értéke csökken a gamma sugárzás energiájának növekedésével, növekszik a detektor térfogatával és jelentősen befolyásolják a mérési geometria paraméterei: forrás-detektor távolság, forrás alakja, kiterjedtsége és a forrás anyaga. A félvezető-detektorokat gyártó cégek megadják az u. n. relatív hatásfokot, amely egy 25 cm távolságban elhelyezett 60Co pontforrás 1333 KeV vonalának intenzitására vonatkozik a (9) egyenletnek megfelelően

\[ \eta_{rel} = \frac{\eta_{Ge}}{\eta_{Nal}} \]
(9)

Mérés alatti bomlás korrekciója

Ha a mérendő izotóp felezési ideje rövid a mérés időtartamához viszonyítva, azaz összemérhető a minta mérési idejével, akkor az aktivitás meghatározása során figyelembe kell venni a mérés alatt bekövetkező bomlásokat is. A radioaktív bomlás időfüggése alapján felírható a (10) egyenlet, ahol \setbox0\hbox{${\Large{\lambda}}$}% \message{//depth:\the\dp0//}% \box0% az izotóp bomlási állandója és tm a mérés időtartama, N0 a radioaktív preparátum aktivitása a mérés kezdő időpontjában és Nm a mérés teljes időtartama alatt mért aktivitás.

\[ N_{0} = \frac{N_{m}}{\int_{0}^{t_{m}}e^{-\lambda t}dt} = \frac {N_{m} \lambda t_{m}}{1-e^{-\lambda t_{m}}} \]
(10)

Valódi koincidencia és a mintaösszetétel miatti korrekciók

A gyakorlati gamma-spektroszkópiai méréseknél szükség lehet még további két különböző korrekció alkalmazására is. Az egyik ilyen jelenség a valódi-koincidencia, amely akkor jön létre, ha a mérendő mintában olyan izotóp található, amely kaszkád bomlással több fotont emittál a spektrométer holtidején belüli időtartamban (ilyen a 60Co, 152Eu izotópok). Az effektus valószínűsége növekszik a detektortérfogattal és a minta-detektor távolság csökkenésével de független a minta aktivitásától. A valódi koincidencia miatt a spektrumban megjelennek az összegcsúcsok, ami két valódi teljesenergia-csúcs összegéből áll elő, ezzel együtt a teljesenergia csúcsok területe kisebb lesz. A valódi koincidencia korrekcióba vétele általában bonyolult számítást jelent, amire a gyakorlat során alkalmazott Genie-2000 kiértékelő szoftver fel van készítve.

A nagy térfogatú minták mérése során a mintában bekövetkező önabszorpció jelentős intenzitásváltozást okozhat. Ez akkor következik be, ha a detektortól távolabbi mintarészekből emittált fotonok csak a minta anyagán keresztül tudnak a detektorkristályba jutni. Ekkor a minta abszorbciós tulajdonságaitól függően csökken a detektált fotonok száma. Ennek a jelenségnek a figyelmen kívül hagyása kis energiájú (kb. 150 keV alatti) gamma-sugárzások mérésénél jelentős mértékű hibát okozhat. Az önabszorbció korrekciójának meghatározásához a hatásfok-kalibrációhoz használt forrásokat egy, a mintához hasonló abszorbciós tulajdonságú anyagba kevert izotópokkal kell elkészíteni. Megoldást jelenthet az is ha a minta összetétele ismeretében a korrekció mértékét elméleti számításokkal megbecsüljük.

A csúcsterületek számítása:

A gyakorlat során a Genie-2000 kiértékelő szoftvert használjuk, ami a csúcsterület és annak hibája számítását automatikusan végzi a következő algoritmus szerint.

Gamma_5

A kiértékelő szoftverrel átlapoló csúcsokból álló együttesek is kiértékelhetőek. Ekkor a megfelelő spektrumrészletre több matematikai függvényből álló összetett alakot illesztünk, amely eredményéből a csúcsok alatti nettó terület meghatározható.

Mérési feladatok

Energiakalibráció

Az energia-kalibráció elvégzéséhez helyezzen el a detektor elé ismert gamma-energiákat sugárzó, pontszerű, etalon sugárforrásokat (60Co, 137Cs). Vegyen fel egy gamma-spektrumot! A teljesenergia-csúcsok helyének megkeresésével, az energiák ismeretében határozza meg a gamma-energia-csatornaszám függvényt! Gyakorlatban a mért adatpárokra első- vagy másodfokú függvény illesztése szokásos. Ehhez a feladathoz használja a Genie-2000 szoftver energia-kalibrációra vonatkozó menüpontját (Calibrate menüpont). Legegyszerűbb esetben legyen két ismert kalibráló energia E1 és E2, a hozzájuk tartozó csatornaszámok Cs1 és Cs2. Feltételezve, hogy a berendezés lineáris, a szoftver az alábbi két ponton átmenő egyenes alapján számítja ki a kalibrációs egyenes meredekségét.

\[ m = \frac{E_{2}-E_{1}}{Cs_{2}-Cs_{1}} \hspace{0.5cm}  \Bigg(\frac {keV}{csat} \Bigg) \]
(11)

Ahol a m az energia-kalibráció egyenesének meredeksége, amely két csatorna közötti intervallum energia értékét adja meg az adott erősítés esetén. A (11) egyenletet célszerű átrendezni a következő formára, ahol b a kalibrációs egyenes tengelymetszete.

\[ E = MCs+b \]
(12)

Az energia-kalibráció elvégzéséhez használja az Calibrate/Energy Only Calibration menüpontot, ahol a kalibrációhoz használt izotópok egyes vonalaira vonatkozóan be kell írni a vonal energiáját és a maximuma helyének csatornaszámát. A fenti művelethez használja fel a kalibráló gamma-forrásokra vonatkozó, az 1. táblázatban található adatokat. Mérje meg néhány, a gyakorlatvezetőtől kapott néhány etalon sugárforrás gamma-spektrumát. Ellenőrizze a kiszámolt energia-kalibrációs görbét, a gyakorlatvezetőtől kapott források ismert energiájú vonalai felhasználásával. A méréseket úgy végezze el, hogy az egyes etalonokat mérés közben cserélje ki ez által egy olyan kevert spektrumot kap, ami tartalmazza az összes mért izotóp vonalait. A szükséges mérési időt úgy válassza meg, hogy a gamma-csúcsok területének statisztikus hibája 1-3%-nál ne legyen nagyobb! Ügyeljen a holtidő nagyságára is, amit a minta-detektor távolság helyes megválasztásával tud elérni: 0, 10, 50, 150 mm. A mérések során a holtidő ne legyen nagyobb, mint 1-2%.

Gamma_tbl_1
Gamma_tbl_2

A feladattal kapcsolatos adatokat a részfeladathoz tartozó táblázatba jegyezze fel. Az árnyékolt mérőkamrában talál egy plexi állványt és egy mintatartó plexi lapot, amelynek tetejére kell elhelyezni az etalon-forrásokat. A plexi mintatartó magasságbeli helyzetét változtatva különböző minta-detektor távolság állítható be. Az egyes pozíciók helyzetéhez tartozó detektor-minta távolságok az adott pozíción fel vannak tüntetve. A Genie-2000 által kiszámított paramétereket és az illesztett kalibrációs görbét a Calibrate/Energy show menüpont alatt találja.

A spektrométer energiafelbontásának meghatározása

Ehhez a feladathoz használja az előző pontban már felvett és tárolt "mix" spektrumot az ismert csúcsokkal. Határozza meg az egyes csúcsok FWHM értékét, majd ábrázolja az adatokat illessze rá a \setbox0\hbox{${FWHM = a+b}\sqrt{E}$}% \message{//depth:\the\dp0//}% \box0% függvényt az energia függvényében!

Gamma_tbl_3

3. A detektor abszolút hatásfok függvényének meghatározása

Helyezzen ismert aktivitású és energiájú etalon pontforrásokat a detektor elé úgy, hogy mérés közben a holtidő minden esetben kisebb legyen, mint 5%. Mérje meg az egyes izotóp források gamma-spektrumát! Mivel a hatásfok függ a geometriai elrendezéstől, a mérések során végig azonos minta-detektor távolságot használjon!

A mért spektrumokat értékelje ki a Genie-2000 segítségével és számítsa ki a teljesenergiacsúcs integrálját (N), majd határozza meg a hatásfok értékeit \setbox0\hbox{${\eta}$}% \message{//depth:\the\dp0//}% \box0% a mért csúcsok energiáinál a (8) összefüggés felhasználásával \setbox0\hbox{${\eta = N/t<sub>m</sub>Ak}$}% \message{//depth:\the\dp0//}% \box0%

Gamma_tbl_4
Ábrázolja a számított hatásfok értékeit LaTex syntax error
\setbox0\hbox{${\etaszámított) az energia függvényében log-log
formában! A mért hatásfokadatokra a (13) szerinti polinom függvényt célszerű illeszteni, ahol $}%
\message{//depth:\the\dp0//}%
\box0%
{\eta}$ az E energiánál a fenti táblázat szerint számított hatásfok értéke.
\[ ln\eta = a+b\ln E + c(ln E)^{2}+d(ln E)^{3} \]
(13)

Az illesztésb_l határozza meg az a,b,c,d, paramétereket. A hatásfokok ismeretében számítsa ki a detektált izotópok aktivitását! Határozza meg a detektor hatásfokfüggvényét az adott távolságra vonatkozó pontforrás geometriára. 4. Pontszer_ radioaktív forrás aktivitásának meghatározása Határozza meg egy, a gyakorlatvezet_ által megadott forrás aktivitását. Az aktivitás számítása a (8) összefüggésb_l származtatott (14) formula alapján történik, ahol N a nettó csúcsterület [imp], tm a minta mérési id_tartama, k az adott gamma-vonal gyakorisága. Gamma-spektrometria HPGe detektorral

NAA 1.JPG