Középiskolásoknak ajánljuk

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Halbritt (vitalap | szerkesztései) 2018. szeptember 24., 15:23-kor történt szerkesztése után volt.

Középiskolásoknak szervezett programjainkról, illetve BME TTK fizikus és mamtematikusképzéséről részletesen olvashatsz a http://felvi.ttk.bme.hu oldalon.

További hasznos tartalmak:

Nobel-díjas kísérletek középiskolásoknak szakkör mérésleírásai

Kísérleti videók


Holográfia

Gábor Dénes (1900-1979) magyar születésű villamosmérnök és fizikus fejében 1947-ben fogant meg a holográfia alapötlete: a tárgyról érkező fény nem halad át egy lencsén, amely leképezné a fényérzékeny filmre (mint az a hagyományos fényképezésben történik), hanem közvetlenül rászóródik a fényérzékeny lemezre, egy másik, ún. referencia fényhullámmal együtt. Amikor a tárgyról érkező fényhullám és a referencia fényhullám összeadódik, a fényérzékeny lemezen interferenciakép keletkezik, amely a tárgyról érkezett hullámra vonatkozó teljes, háromdimenziós információt rögzíti. A hologramfelvétel készítéséhez koherens, egyszínű fényt kiadó fényforrásra van szükség (pl. a napfény vagy az izzólámpa fénye nem alkalmas erre). Nem csoda, hogy a holográfia tudományterülete csak az 1960-as évek elejétől, a lézer feltalálásával indult igazán látványos fejlődésnek. Az a néhány év azonban, ami ekkor következett – ekkor bontakoztak ki olyan, ma is virágzó kutatási területek, mint a holografikus optikai elemek, a holografikus interferometria, a számítógépes holográfia, a reflexiós holográfia – elég volt, hogy meggyőzze a Svéd Tudományos Akadémia bizottságát: 1971-ben Gábor Dénesnek ítélték a fizikai Nobel-díjat. Azóta a holográfia még számos jelentős területtel bővült, mint pl. a holografikus adattárolás vagy a holografikus biztonságtechnika.

A látványos, háromdimenziós kép visszaadásán kívül különösen izgalmas tulajdonsága a hologramnak, hogy az információ másképp oszlik el rajta, mint a hagyományos információtároló eszközökön (pl. a fényképen, a DVD-n vagy a számítógép mágneses merevlemezén). A hologramot kis darabokra törve is minden darabban a teljes tárgyinformáció megőrződik.

A mérés során megismerkedhettek a holográfia fortélyaival, és mindenki készíthet egy hologramot magának.

A mérés részletes leírását itt találjátok meg.

Folyadékkristályok polarizált fényben - az LCD kijelzőktől a maláriadiagnózisig

Pierre-Gilles de Gennes francia fizikus 1991-ben kapott Nobel-díjat polimerekben és folyadékkristályokban lezajló rendeződési folyamatok leírásáért. A folyadékkristály-kijelzők óriási technikai jelentősége már a Nobel-díj odaítélésekor is nyilvánvaló volt, bár akkor még távol állt a a technikai fejlettség a napjaink okostelefonjaiban vagy televízióiban használt nagy felbontású LCD kijelzőktől. (Az LCD betűszó az angol liquid crystal display kezdőbetűiből áll össze.) A folyadékkristály-cellákhoz nagyon hasonlóan működik az a műszer, amit a BME Fizikai Intézet kutatói a maláriafertőzés nagyon érzékeny kimutatására fejlesztettek ki. A maláriafertőzést okozó paraziták a vörösvértestekből hosszúkás, ún. hemozoin kristályokat hoznak létre, melyek mágneses viselkedésük miatt külső mágneses térben egy irányba rendezhetők - ezt használja ki az egyedülálló érzékenységű diagnosztikai műszer, mellyel kollégáink többek között egy, 2015-ben Nobel-díjjal is jutalmazott, maláriagyógyszer hatását vizsgálják.

A mérés első felében kísérletezve megismerhetitek, hogyan működik egy folyadékkristály-kijelző, majd kipróbálhatjátok, hogyan lehet egy mágnes és polarizált fény segítségével a maláriafertőzést jelző hemozoin kristályokat kimutatni. (A mérésen természetesen nem fertőzött vért, hanem szintetikus kristályokat használunk.)

A mérés részletes leírását itt találjátok meg.