Kinematika - 1.4.7

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Gombkoto (vitalap | szerkesztései) 2014. január 9., 16:19-kor történt szerkesztése után volt.

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Mozgástan
Feladatok listája:
  1. Kinematika - 1.1.7
  2. Kinematika - 1.2.6
  3. Kinematika - 1.2.8
  4. Kinematika - 1.3.1
  5. Kinematika - Változó mozgás
  6. Kinematika - 1.3.8
  7. Kinematika - 1.4.6
  8. Kinematika - 1.4.7
  9. Kinematika - 1.4.10
  10. Kinematika - 1.4.17
  11. Kinematika - 1.4.18
  12. Kinematika - 1.4.20
  13. Kinematika - 1.4.23
  14. Kinematika - Ferde hajítás
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (*1.4.7) Egy síkban mozgó pontszerűnek tekinthető test sebességvektorát az alábbi összefüggés írja le: \setbox0\hbox{$\mathbf{v}(t)=A\sin(\omega t)\mathbf{i} + B\sin(\omega t+\varphi)\mathbf{j}$}% \message{//depth:\the\dp0//}% \box0%.
    a) Írja fel a tömegpont helyvektorát mint az idő függvényét, ha a \setbox0\hbox{$t=0\,s$}% \message{//depth:\the\dp0//}% \box0% időpontban a test az \setbox0\hbox{$\mathbf{r}_{0}=x_{0}\mathbf{i} + y_{0}\mathbf{j}$}% \message{//depth:\the\dp0//}% \box0% koordinátájú pontban tartózkodott!
    b) Határozza meg a test gyorsulásvektorát az idő függvényében!
    c) Milyen pályán mozog a test, ha \setbox0\hbox{$\varphi=n\pi/2$}% \message{//depth:\the\dp0//}% \box0% valamilyen \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% egész számmal?

Megoldás

  1. a) A tömegpont helyvektora az alábbiak szerint határozható meg.
    \[\mathbf{r}(t)=\mathbf{r}_{0}+\int_{0}^{t}\mathbf{v}(t')dt'=\left(x_{0}+\frac{A}{\omega}-\frac{A}{\omega}\cos(\omega t)\right)\mathbf{i} +\left( y_{0}+\frac{B}{\omega}\cos\varphi- \frac{B}{\omega}\cos(\omega t+\varphi)\right)\mathbf{j}\]
    b) A gyorsulásvektor
    \[\mathbf{a}(t)=\frac{d\mathbf{v}}{dt}=A\omega\cos(\omega t)\mathbf{i} + B\omega\cos(\omega t+\varphi)\mathbf{j}\,.\]
    c) Vezessük be az \setbox0\hbox{$\mathbf{r}(t)=(x(t),y(t))$}% \message{//depth:\the\dp0//}% \box0% helyvektor komponensei helyett az
    \[X(t)=x(t)-x_{0}-\frac{A}{\omega}\qquad \mbox{és}\qquad Y(t)=y(t)-y_{0}-\frac{B}{\omega}\cos\varphi\]
    változókat a rövidebb jelölés érdekében! Ez a transzformáció egy eltolásnak felel meg. A helyvektor komponenseinek időfüggése alapján
    \[X(t)=-\frac{A}{\omega}\cos(\omega t) \qquad \mbox{és} \qquad Y(t)=-\frac{B}{\omega}\cos(\omega t)\cos\varphi + \sin(\omega t)\sin\varphi\,.\]
    Az egyenletek átrendezhetők olyan formába, amelyben az időfüggést már csak \setbox0\hbox{$X(t)$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$Y(t)$}% \message{//depth:\the\dp0//}% \box0% hordozzák.
    \[\left(\frac{\omega X(t)}{A}\right)^2-2\left(\frac{\omega X(t)}{A}\right)\left(\frac{\omega Y(t)}{B}\right)\cos\varphi+\left(\frac{\omega Y(t)}{B}\right)^2=\sin^{2}\varphi\]
    Ez az egyenlet határozza meg a test pályáját. A feladatban csak a \setbox0\hbox{$\varphi=n\pi/2$}% \message{//depth:\the\dp0//}% \box0% eseteket kell vizsgálni, ahol \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% egy egész szám. Ha \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% páros, akkor \setbox0\hbox{$\sin\varphi=0$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\cos\varphi=(-1)^n$}% \message{//depth:\the\dp0//}% \box0%, vagyis a pálya egyenlete
    \[X^2-2XY+Y^2=0\qquad\mbox{vagy}\qquad X^2+2XY+Y^2=0\]
    alakban írható. Tovább alakítva
    \[X=Y\qquad\mbox{vagy}\qquad X=-Y\]
    egyenletet kapunk, vagyis a pálya egyenlete egy egyenes menti harmonikus rezgőmozgást ír le.
    Ha \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% páratlan, akkor \setbox0\hbox{$\cos\varphi=0$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\sin\varphi$}% \message{//depth:\the\dp0//}% \box0% a \setbox0\hbox{$\pm 1$}% \message{//depth:\the\dp0//}% \box0% értékeket veheti fel, mindkét esetben \setbox0\hbox{$\sin^{2}\varphi=1$}% \message{//depth:\the\dp0//}% \box0%. A pálya egyenlete ekkor
    \[\left(\frac{\omega X(t)}{A}\right)^2+\left(\frac{\omega Y(t)}{B}\right)^2=1\]
    alakban írható. Amennyiben \setbox0\hbox{$A=B$}% \message{//depth:\the\dp0//}% \box0%, az egyenlet egy körmozgást ír le. Egyéb esetekben a test egy ellipszis pályán mozog.