„Kis fényintenzitások mérése zajos környezetben: Fázisérzékeny detektálás (lock-in)” változatai közötti eltérés

A Fizipedia wikiből
a
a
43. sor: 43. sor:
  
 
A szorzat átalakítások után a következő alakba írható:
 
A szorzat átalakítások után a következő alakba írható:
 +
{{eq|\theta_s v_f{{=}} \frac{E_sV_f}{2}\cdot\left[\cos(2\omega_0t + \phi) + \cos\phi\right]|eq:3|(3)}}
 +
Legyen a kimeneti aluláteresztő RC szűrő időállandója T. Ha teljesül az $1/T\ll2\omega_0$ feltétel, akkor a szűrő az összeg kétszeres frekvenciájú tagját gyakorlatilag teljesen kiszűri, s ezzel a kimenő jel:
 +
{{eq|V_{ki}{{=}} \frac{E_sV_f}{2}\cos\phi|eq:4|(4)}}
 +
Ez a fázisérzékeny detektálás alapegyenlete. Ha a referencia és a detektorjel fáziskülönbsége állandó, akkor V<sub>ki</sub> arányos az E<sub>s</sub> jel amplitúdóval, Ez az ún. amplitúdó üzemmód. Ha E<sub>s</sub> állandó, akkor V<sub>ki</sub> a két jel közti fáziskülönbség koszinuszával arányos. Ebben az esetben fázismérésre használhatjuk a lock-in erősítőt. A mérési feladatok között mindkét üzemmódra található példa.
  
 +
Vizsgáljuk meg, hogy milyen módon valósítható meg keskeny sávszélességű detektálás a lock-in erősítővel (azaz hogyan szűri ki az f<sub>0</sub> frekvenciától eltérő zajokat). A [[#fig:3|3. ábra]] alapján a frekvencia függvényében a legcélszerűbb nyomon követni a lock-in erősítő egyes pontjain a jeleket. Legyen a mérendő objektum jelet befolyásoló hatása konstans, vagy lassú változás (pl. lassan ülepedő oldat fényáteresztő képessége). Ebben az esetben az E<sub>s</sub> jel spektrumában csak 0, ill. kisfrekvenciás komponensek fordulnak elő. Jelöljük a felső határfrekvenciát e<sub>s</sub>-el ([[#fig:3|3/a. ábra]]). Vegyük észre, hogy az e<sub>s</sub> detektorjel ebben az esetben amplitúdómodulált jel, amelynek a spektrumában - mint ismeretes - az f<sub>0</sub> frekvencia körüli oldal sávokban jelenik meg a moduláló jel. E hasznos jelen kívül azonban a detektoron a környezetből zaj is megjelenik (pl. az elektronikus áramkörök alacsony frekvenciás ún. 1/f zaja, valamint fénydetektálás esetében a környezeti megvilágításból származó 100 Hz-es - vagy fénycsövek esetében magasabb frekvenciás - zaj) ([[#fig:3|3/b. ábra]]). Az f<sub>0</sub> frekvenciájú referenciajel és a detektorjel össze szorzás a után (e<sub>s</sub>, v<sub>f</sub>) újabb frekvenciatranszponálás következik be: a hasznos jel egyrészt a 2f<sub>0</sub> körüli oldalsávokba, másrészt az eredeti helyére, a 0-F sávba kerül. (Ez könnyen belátható a $\cos(\omega_0t)\cos(\omega_1t) {{=}} \left[\cos(\omega_0-\omega_1)t + \cos(\omega_0+\omega_1)t\right]/2$ azonosság alapján.)
 +
 +
Hasonlóképpen a zajspektrum is transzponálódik az f<sub>0</sub> körüli oldalsávokra ([[#fig:3|3/c. ábra]])! A szorzat jelet a kimeneti aluláteresztő szűrőn átvezetve a mérendő jelspektrumot kapjuk vissza, és a környezetből származó kisfrekvenciás zaj nem zavarja meg a mérést ([[#fig:3|3/d. ábra]]).
 +
 +
A [[#fig:3|3. ábrából]] kitűnnek az f<sub>0</sub> mérőjel frekvencia és a kimeneti aluláteresztő szűrő T időállandó megválasztásának szempontjai:
 +
* lehetőség szerint az f<sub>0</sub> frekvencia közelébe ne essen a környezetből származó zajkomponens,
 +
* $f \gg F$ legyen, hogy a frekvenciatranszponálások következtében az
 +
oldalsávok között ne keletkezzen átlapolódás,
 +
* $1/T \ll 2\pi f_0$ legyen, hogy az f<sub>0</sub> körüli oldalsavakban megjelenő zajkomponenseket az aluláteresztő szűrő megfelelően csillapítsa,
 +
* $1/T \gg 2\pi f$ legyen, hogy a jelspektrum ne torzuljon az aluláteresztő szűrőn keresztülvezetve. Látható az is, hogy a szűrő hatás nem követeli meg az f<sub>0</sub> frekvencia nagyfokú stabilitását.
 +
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
| {{fig|LockIn_03.png|fig:3|3. ábra A lock-in erősítő egyes pontjain mérhető jel spektrumok: a.) a mérendő objektum, b.) a teljes detektorjel (hasznos jel +zaj), c.) a szorzó kimenete, d.) az aluláteresztő szűrő kimenete.
 +
}}
 +
|}
  
  

A lap 2013. január 31., 19:38-kori változata


Tartalomjegyzék


Elméleti összefoglaló

Jel érzékelése zaj jelenlétében

Különböző jelek detektálásakor gyakran felmerül a probléma, hagy az érzékelni kívánt (hasznos) jel mellett egyidejűleg zaj is megjelenik. Hogyan tehet ilyen esetben a hasznos jelet elválasztani a zajtól? Ha a jel és a zaj frekvenciaspektruma ismert, megfelelő szűrő megválasztásával lehet a jel-zaj viszonyt javítani. Például, ha a mérni kívánt jel sávszélessége keskeny, akkor egy ehhez illesztett sávszűrővel a jel kiemelhető a zajból. Az 1. ábrán sematikusan bemutatott esetben a szelektív mérőrendszer csak a mérendő f0 frekvenciájú jelet, és az átviteli sávjába eső zaj komponenseket méri. Minél kisebbre választjuk a ∆f sávszélességet, annál jobb jel-zaj viszony érhető el.

1. ábra f0 frekvenciájú jel és B sávszélességű, sáv korlátozott fehér zaj teljesítményspektruma, valamint az f0 frekvenciára hangolt szelektív mérőrendszer átvitele.

A gyakorlati esetek ennél természetesen sokszor jóval bonyolultabbak, hiszen sem a zaj nem az 1. ábra szerinti sáv korlátózott fehér zaj, sem a jelek spektruma nem ilyen egyszerű. Azonban általában elmondható hogy a jel-zaj viszony javítására általánosan használható a sávszélesség csökkentése.

A szelektív mérőerősitőkben alkalmazott keskenysávú szűrők realizálása kis frekvencián (néhány kHz alatt) a gyakorlatban sok problémát hordoz magában (frekvenciastabilitás, alkatrészek tűrése, fizikai méretek). Ezen kívül a mérendő jel frekvenciájának is elegendően lennie, különben kicsúszik az áteresztési sávból. Ezeket a nehézségeket küszöbölhetjük ki a fázisérzékeny (lock-in) erősítők extrém kis sávszélességek mellett (pl. 10-3 Hz) igen nagy stabilitást (10-6) biztosítanak. Lehetővé teszik széles tartományban a működési frekvencia (1 Hz < f0 < 50 MHz) és a sávszélesség (10-2 Hz < f < 1 MHz) megválasztását. Használatukkal kiszűrhetők a diszkrét frekvenciájú zajok is (hálózati zavarok, mechanikus rezgések, stb.). A jel frekvenciaváltozását követő keskenysávú szűrőként viselkednek.

A fázisérzékeny detektálás elve

2. ábra A fázisérzékeny detektálás elve

A módszer lényege, hogy a jeladó által szolgáltatott referencia jelet (vf), valamint a mérendő objektum és a környezeti zaj által befolyásolt, a detektor által érzékelt jelet (es) összeszorozzuk, majd az alul áteresztő szűrő segítségével a szorzat alacsonyfrekvenciás komponensét mérjük (2. ábra). Legyen a mérőjel és a referenciajel azonos alakú:

 
\[v_f = V_f\cdot \cos(\omega_0t)\]
(1)

ahol \setbox0\hbox{$\omega_0 = 2\pi f_0$}% \message{//depth:\the\dp0//}% \box0%. A mérendő objektum megváltoztathatja az amplitúdót, ill. a fázist is. (A környezeti zaj hozzáadódásától egyelőre tekintsünk el.) Általános esetben tehát a detektor által szolgáltatott jel:

 
\[\theta_s = E_s\cos(\omega_0t + \phi)\]
(2)

ahol \setbox0\hbox{$E_s = E_s(t)$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\phi = \phi(t)$}% \message{//depth:\the\dp0//}% \box0% a mérendő (\setbox0\hbox{$\omega_0$}% \message{//depth:\the\dp0//}% \box0% körfrekvenciához képest lassan változó) időfüggvények.

A szorzat átalakítások után a következő alakba írható:

 
\[\theta_s v_f= \frac{E_sV_f}{2}\cdot\left[\cos(2\omega_0t + \phi) + \cos\phi\right]\]
(3)

Legyen a kimeneti aluláteresztő RC szűrő időállandója T. Ha teljesül az \setbox0\hbox{$1/T\ll2\omega_0$}% \message{//depth:\the\dp0//}% \box0% feltétel, akkor a szűrő az összeg kétszeres frekvenciájú tagját gyakorlatilag teljesen kiszűri, s ezzel a kimenő jel:

 
\[V_{ki}= \frac{E_sV_f}{2}\cos\phi\]
(4)

Ez a fázisérzékeny detektálás alapegyenlete. Ha a referencia és a detektorjel fáziskülönbsége állandó, akkor Vki arányos az Es jel amplitúdóval, Ez az ún. amplitúdó üzemmód. Ha Es állandó, akkor Vki a két jel közti fáziskülönbség koszinuszával arányos. Ebben az esetben fázismérésre használhatjuk a lock-in erősítőt. A mérési feladatok között mindkét üzemmódra található példa.

Vizsgáljuk meg, hogy milyen módon valósítható meg keskeny sávszélességű detektálás a lock-in erősítővel (azaz hogyan szűri ki az f0 frekvenciától eltérő zajokat). A 3. ábra alapján a frekvencia függvényében a legcélszerűbb nyomon követni a lock-in erősítő egyes pontjain a jeleket. Legyen a mérendő objektum jelet befolyásoló hatása konstans, vagy lassú változás (pl. lassan ülepedő oldat fényáteresztő képessége). Ebben az esetben az Es jel spektrumában csak 0, ill. kisfrekvenciás komponensek fordulnak elő. Jelöljük a felső határfrekvenciát es-el (3/a. ábra). Vegyük észre, hogy az es detektorjel ebben az esetben amplitúdómodulált jel, amelynek a spektrumában - mint ismeretes - az f0 frekvencia körüli oldal sávokban jelenik meg a moduláló jel. E hasznos jelen kívül azonban a detektoron a környezetből zaj is megjelenik (pl. az elektronikus áramkörök alacsony frekvenciás ún. 1/f zaja, valamint fénydetektálás esetében a környezeti megvilágításból származó 100 Hz-es - vagy fénycsövek esetében magasabb frekvenciás - zaj) (3/b. ábra). Az f0 frekvenciájú referenciajel és a detektorjel össze szorzás a után (es, vf) újabb frekvenciatranszponálás következik be: a hasznos jel egyrészt a 2f0 körüli oldalsávokba, másrészt az eredeti helyére, a 0-F sávba kerül. (Ez könnyen belátható a \setbox0\hbox{$\cos(\omega_0t)\cos(\omega_1t) {{=}} \left[\cos(\omega_0-\omega_1)t + \cos(\omega_0+\omega_1)t\right]/2$}% \message{//depth:\the\dp0//}% \box0% azonosság alapján.)

Hasonlóképpen a zajspektrum is transzponálódik az f0 körüli oldalsávokra (3/c. ábra)! A szorzat jelet a kimeneti aluláteresztő szűrőn átvezetve a mérendő jelspektrumot kapjuk vissza, és a környezetből származó kisfrekvenciás zaj nem zavarja meg a mérést (3/d. ábra).

A 3. ábrából kitűnnek az f0 mérőjel frekvencia és a kimeneti aluláteresztő szűrő T időállandó megválasztásának szempontjai:

  • lehetőség szerint az f0 frekvencia közelébe ne essen a környezetből származó zajkomponens,
  • \setbox0\hbox{$f \gg F$}% \message{//depth:\the\dp0//}% \box0% legyen, hogy a frekvenciatranszponálások következtében az

oldalsávok között ne keletkezzen átlapolódás,

  • \setbox0\hbox{$1/T \ll 2\pi f_0$}% \message{//depth:\the\dp0//}% \box0% legyen, hogy az f0 körüli oldalsavakban megjelenő zajkomponenseket az aluláteresztő szűrő megfelelően csillapítsa,
  • \setbox0\hbox{$1/T \gg 2\pi f$}% \message{//depth:\the\dp0//}% \box0% legyen, hogy a jelspektrum ne torzuljon az aluláteresztő szűrőn keresztülvezetve. Látható az is, hogy a szűrő hatás nem követeli meg az f0 frekvencia nagyfokú stabilitását.
3. ábra A lock-in erősítő egyes pontjain mérhető jel spektrumok: a.) a mérendő objektum, b.) a teljes detektorjel (hasznos jel +zaj), c.) a szorzó kimenete, d.) az aluláteresztő szűrő kimenete.


Mérési feladatok

PDF formátum