Kvantummechanikai bevezető

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Stippinger (vitalap | szerkesztései) 2013. április 21., 18:35-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Kvantummechanikai bevezető
Feladatok listája:
  1. Nap felszíni hőmérséklete
  2. Izzólámpa hatásfoka
  3. Fekete test
  4. Tantál kilépési munkája
  5. Compton-szórás
  6. Compton-szórás szabadon
  7. Fluxuskvantálás
  8. Bohr-modell
  9. Rel. tömegnövekedés
  10. Kéttest korrekció
  11. Visszalökődés
  12. Korrespondencia-elv
  13. Foton és elektron Ekin(k)
  14. Schrödinger-egyenlet
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Ismert fizikai állandók


\setbox0\hbox{$k_B$}% \message{//depth:\the\dp0//}% \box0% = \setbox0\hbox{$1{,}381 \cdot 10^{-23}\,\mathrm{J \cdot K^{-1}}$}% \message{//depth:\the\dp0//}% \box0% Boltzmann-állandó
\setbox0\hbox{$h$}% \message{//depth:\the\dp0//}% \box0% = \setbox0\hbox{$6{,}626 \cdot 10^{-34}\,\mathrm{J s}$}% \message{//depth:\the\dp0//}% \box0% Planck-állandó \setbox0\hbox{$h=2\pi \hbar$}% \message{//depth:\the\dp0//}% \box0%
\setbox0\hbox{$\sigma$}% \message{//depth:\the\dp0//}% \box0% = \setbox0\hbox{$5{,}67 \cdot 10^{-8}\,\mathrm{Wm^{-2}K^{-4}}$}% \message{//depth:\the\dp0//}% \box0% Stefan-Boltzmann állandó
\setbox0\hbox{$c$}% \message{//depth:\the\dp0//}% \box0% = \setbox0\hbox{$2{,}998 \cdot 10^{8}\,\mathrm{m \cdot s^{-1}}$}% \message{//depth:\the\dp0//}% \box0% vákuumbeli fénysebesség
\setbox0\hbox{$e$}% \message{//depth:\the\dp0//}% \box0% = \setbox0\hbox{$1{,}602 \cdot 10^{-19}\,\mathrm{C}$}% \message{//depth:\the\dp0//}% \box0% elemi töltés
\setbox0\hbox{$m_e$}% \message{//depth:\the\dp0//}% \box0% = \setbox0\hbox{$9{,}110\cdot 10^{-31}\,\mathrm{kg}$}% \message{//depth:\the\dp0//}% \box0% elektron tömege
\setbox0\hbox{$m_p$}% \message{//depth:\the\dp0//}% \box0% = \setbox0\hbox{$1{,}672 \cdot 10^{-27}\,\mathrm{kg}$}% \message{//depth:\the\dp0//}% \box0% proton tömege (\setbox0\hbox{$m_p\approx 1835m_e$}% \message{//depth:\the\dp0//}% \box0%)
\setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% = \setbox0\hbox{$3{,}289 \cdot 10^{15}\,\mathrm{s^{-1}}$}% \message{//depth:\the\dp0//}% \box0% Rydberg-állandó

Feladatok

  1. Nyári napsütésben, délben a Föld felszínének \setbox0\hbox{$1\,\mathrm{m^2}$}% \message{//depth:\the\dp0//}% \box0%-én átlagosan kb. \setbox0\hbox{$1400\,\mathrm{W}$}% \message{//depth:\the\dp0//}% \box0% napsugárzási teljesítmény mérhető. Becsüljük meg a Nap felszínének hőmérsékletét!
    (\setbox0\hbox{$\sigma =5{,}671\cdot {10}^{-8}\mathrm{\frac W{m^2\,K^4}}$}% \message{//depth:\the\dp0//}% \box0%)