„Kvantumszámítógép-architektúrák” változatai közötti eltérés

A Fizipedia wikiből
(Slides)
(A lap tartalmának cseréje erre: http://physics.bme.hu/BMETE15MF60_kov?language=en)
 
1. sor: 1. sor:
__NOTOC__
+
http://physics.bme.hu/BMETE15MF60_kov?language=en
=Quantum Computing Architectures=
+
==Course Information, 2018==
+
 
+
*'''Lecturers:''' András Pályi, Péter Makk
+
*'''Responsible lecturer:''' András Pályi
+
*'''Language:''' English
+
*'''Location:''' building H, room H601
+
*'''Time:''' Wednesdays, 12:15-13:45
+
*'''Schedule:''' first lecture: Sep 5; no lecture on Sep 12, Sep 26, Oct 10, and nov 14; last lecture: Dec 5.
+
*'''Neptun Code:'''  BMETE15MF60
+
*'''Credits:''' 3
+
*'''Exam:''' Short written test + oral exam. Dates: Dec 17, Jan 7, Jan 14, Jan 21. Exams start at 8:00am.
+
 
+
==Slides==
+
 
+
Lecture 1: [[:File:Lecture01.pdf]]<br />
+
Lecture 2: [[:File:Lecture02.pdf]]<br />
+
Lecture 3: [[:File:Lecture03.pdf]]<br />
+
Lecture 4: [[:File:Lecture04.pdf]]<br />
+
Lecture 5: [[:File:Lecture05.pdf]]<br />
+
Lecture 6: [[:File:Lecture6.pdf]]<br />
+
Lecture 7: [[:File:Lecture07.pdf]]<br />
+
Lecture 8: [[:File:Lecture08.pdf]]<br />
+
Lecture 9: [[:File:Lecture09.pdf]]<br />
+
Lecture 10: [[:File:Lecture10.pdf]]<br />
+
 
+
 
+
Control questions, exercises (Dec. 12, 2018): [[:File:ControlQuestionsExercises-v7.pdf]]
+
 
+
==Syllabus==
+
 
+
 
+
*'''1. Quantum bits'''
+
Qubits, dynamics, measurement, polarization vector, composite systems, logical gates, circuits, algorithms.
+
 
+
*'''2. Control of quantum systems.'''
+
Hamiltonians, propagators, and quantum gates. Larmor precession, Rabi oscillations, dispersive resonator shift in the Jaynes-Cummings model, exchange interaction, virtual photon exchange.
+
 
+
*'''3. Qubits based on the electron spin. '''
+
Quantum dots, energy scales. Interactions: Zeeman, spin-orbit, hyperfine, electron-phonon, electron-electron.
+
 
+
*'''4. Coherent control of electron spins. '''
+
Single-qubit gates: magnetic resonance, electrically driven spin resonance. Two-qubit gates: sqrt-of-swap via exchange interaction, CPhase. Error mechanisms during qubit control.
+
 
+
*'''5. Information loss mechanisms for electron spins.'''
+
Qubit relaxation due to spin-orbit interaction and phonons. Qubit dephasing due to nuclear spins. Decoherence due to charge noise. Hahn echo and Car-Purcell-Meibloom-Gill (CPMG) schemes for prolonging the decoherence time.
+
 
+
*'''6. Introduction to superconductivity. '''
+
Basics of superconductivity. Josephson junctions. Current-phase and voltage-phase Josephson relations. Andreev reflection. Andreev Bound State picture of the current-phase Josephson relation.
+
 
+
*'''7. Josephson devices. '''
+
Resistively and capacitively shunted junction (RCSJ) model, junction dynamics, switching voltages, macroscopic quantum tunnelling, Superconducting Quantum Interference Device (SQUID), Fraunhofer pattern, spatial distribution of the Josephson current, radiofrequency (RF) SQUID.
+
 
+
*'''8. Control and readout of single qubits.'''
+
Quantization of  RF circuits, phase and charge as conjugate variables. Different qubit architectures: flux, charge, phase. Single-qubit gates and readout.
+
 
+
*'''9. Information loss in superconducting qubits.'''
+
Experiments on single qubits. Deceoherence in qubits, sweet spots. Transmon as a noise-resistant qubit architecture.
+
 
+
*'''10. Circuit quantum electrodynamics.'''
+
Superconducting resonators and their interaction with a transmon qubit. Strong coupling in
+
circuit quantum electrodynamics. Single-qubit gates and dispersive readout via the resonator. 
+
 
+
*'''11. Entanglement in superconducting qubits. '''
+
Two-qubit coupling mechanisms: capacitive, resonator-based. Two-qubit gates. State tomography, Bell inequalities.
+
 
+
*'''12. Multi-qubit devices.'''
+
Realization of basic quantum algorithms. Error correction: repetition code, surface code.
+
 
+
*'''13. Overview of current research directions. '''
+
Quantum simulation. Intermediate-scale quantum computers (Google, IBM, Intel, D-Wave).
+
 
+
==Literature==
+
*T. Ihn: Semiconducting nanosctructures, Oxford University Press, 2010.
+
*Y.V. Nazarov, Y.M. Blanter: Quantum Transport: Introduction to Nanoscience, Cambridge University Press, 2009.
+
*Zwanenburg et al., Rev. Mod. Phys. 85, 961 (2013)
+
*[[Nanofizika tudásbázis]]
+

A lap jelenlegi, 2020. január 22., 10:23-kori változata

http://physics.bme.hu/BMETE15MF60_kov?language=en