Mágneses nanoszerkezetek vizsgálata

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Nyary (vitalap | szerkesztései) 2018. november 13., 11:23-kor történt szerkesztése után volt.



Tartalomjegyzék


Jól ismert, hogy az elektronok az elektromos töltés mellett spinnel is rendelkeznek, mely számos érdekes jelenséget, többek között bizonyos anyagok ferromágneses viselkedését eredményezi. A mindennapjainkat meghatározó elektronikai készülékek félvezető nanoszerkezetekből épülnek fel, melyek főleg az elektron töltését használják ki. Az utóbbi években azonban megjelentek újfajta, mágneses nanoszerkezetekből épülő eszközök is, melyek működési elve az elektronok kétféle spinbeállási lehetőségén alapul. Az elektronok spin szabadsági fokának használata a nanotechnológiai fejlesztések egyik legperspektivikusabb, dinamikusan fejlődő ága, melyet spinelektronika, vagy röviden spintronika néven szoktak emlegetni. A spintronika fontosságát jellemzi, hogy a 2007. évi fizikai Nobel-díjat egy ilyen elven működő jelenség, az úgynevezett óriás mágneses ellenállás (giant magnetoresistance, GMR) felfedezéséért ítélték oda. A GMR jelenségét Peter Grünberg német, ill. Albert Fert francia kutatócsoportja 1988-ban egymástól függetlenül fedezték fel. Ez az alapkutatási felfedezés hamarosan komoly ipari felhasználást talált, a GMR jelenség tette lehetővé a merevlemezek tárolókapacitásának rohamos fejlődését a hagyományos, mágneses indukción alapuló olvasófejet alkalmazó merevlemezekhez képest. Ezen kívül napjaink számos spintronikai fejlesztése, pl. az ún. mágneses RAM (MRAM) a GMR jelenségén alapul.

A mérési gyakorlaton két spintronikához kapcsolódó jelenséggel ismerkedünk meg, az ún. anizotrop mágneses ellenállás (anisotrope magnetoresistance, AMR), illetve a 2007-es Nobel-díjhoz kapcsolódó óriás mágneses ellenállas (GMR) jelenségével. Az AMR jelenséget PHILIPS KMZ10A, KMZ10A1 típusú magnetorezisztív szenzorokon, még a GMR jelenséget az NVE Corporation AA típusú mágneses érzékelőjével vizsgáljuk.

Anizotrop mágneses ellenállás elvén működő magnetorezisztív szenzorok

1.ábra

Egy mágneses anyagban a kristálytani irányok, illetve az anyag geometriája által kitüntetett irányok úgynevezett mágneses anizotrópiát okozhatnak, melynek hatására a mágneses momentumok az anizotrópia által kitüntetett, ún. könnyű mágnesezési irányba állnak be. A mérés során Philips KMZ10A, ill. KMZ10A1 típusú magnetorezisztív szenzorokat használunk. A szenzorok mágneses vékonyrétegekből készült keskeny mágneses csíkokból épülnek fel, melyekben a geometriai anizotrópia miatt zérus külső tér esetén a mágneses momentumok a csíkkal párhuzamosan szeretnek állni. Véges külső mágneses tér alkalmazásával a momentumokat elfordíthatjuk a kitüntetett irányhoz képest. A spin-pálya kölcsönhatáson alapuló bonyolult fizikai folyamatok miatt egy mágneses vékonyréteg ellenállása függ a mágneses momentumok és az áramirány által bezárt \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% szögtől, melyet anizotrop mágneses ellenállás (AMR) jelenségének nevezünk.

2a.ábra
2b.ábra. A szenzorokban használt AMR szerkezet. A vékonyréteg kristály hossziránya jelöli ki az \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% irányt, amely irányba (vagy ellenirányba) a mágnesezettség vektor alaphelyzetben beáll. A kristály tetejére párologtatott Barber pole elrendezésű Al csíkok segítenek az áramirány beállításában. A jelölt \setbox0\hbox{$H_{ext}$}% \message{//depth:\the\dp0//}% \box0% külső mágneses tér mérésére érzékeny a rendszer.

Egy egyszerű magnetorezisztív mintán az 1. ábra szerinti elrendezésben az ellenállás az \setbox0\hbox{$R = R_0 + \Delta R_0 cos^2\alpha$}% \message{//depth:\the\dp0//}% \box0% képlettel közelíthető. Ha a könnyű mágnesezési irányra merőleges mágneses teret alkalmazunk, a momentumok elfordulnak a mágneses anizotrópia által kitüntetett irányból, így a vékonyréteg ellenállása megváltozik.

Ha az áram a preferált mágnesezettség irányába folyik, az ellenállás négyzetes függvénye lesz a mágnesezettségnek, hiszen \setbox0\hbox{$cos \alpha $}% \message{//depth:\the\dp0//}% \box0% arányos a külső térrel. Lineáris szenzorkarakterisztikát egy speciális elrendezéssel, az ún. Barber-pole segítségével érhetünk el 2a. ábra. Ha a mágneses vékonyrétegből egy hosszú keskeny csíkot készítünk, a mágnesezettség a hosszirányba fog beállni (2b. ábra). A csík két vége között folyó áram irányát a vékonyréteg tetejére ferde csíkokban felpárologtatott alumíniumrétegek segítségével forgatjuk el. Az alumíniumrétegek lényegesen jobban vezetnek az alattuk levő mágneses vékonyrétegnél, ezért az elektronok "próbálják minimalizálni a vékonyrétegben töltött időt", és így a vékonyrétegben az áramirány az alumínium csíkokra lényegében merőlegesen fog beállni. Az áramirányt ilyen módon 45°-kal elforgatva a mágnesezettséghez képest lineáris szenzorkarakterisztikát kaphatunk, hiszen a cos\setbox0\hbox{$^2 \alpha$}% \message{//depth:\the\dp0//}% \box0% függvény lineáris szakaszát használjuk.

3.ábra. A szenzorokban lévő híd kapcsolás, valamint a jelen mérésnél használt két mérőeszköz. A két mérőeszközben a szenzorok a tokozást tekintve a tekercsekhez képest azonos irányban állnak, de a mágneses szerkezetek a szenzorok tokozásához képest el vannak forgatva, így a tekercsek szerepe a két esetben fel van cserélve. (A nagy és a kis körök jelölik a nagy és a kis tekercseket.)
4.ábra

A hőmérsékleti drift elkerülése érdekében a szenzor 4 db, hídkapcsolásban elhelyezett magnetorezisztív vékonyrétegből áll 3. ábra. A híd két szemközti csúcsára \setbox0\hbox{$U_{tap} = 5V$}% \message{//depth:\the\dp0//}% \box0% tápfeszültséget kötünk, és a másik két szemközti csúcs között mérjük a feszültséget (\setbox0\hbox{$U_{ki}$}% \message{//depth:\the\dp0//}% \box0%). Zérus mágneses térben a híd kiegyenlített, így a kimeneten ideális esetben zérus feszültség látható. (A gyakorlatban egy véges offset feszültség megjelenik a kimeneten, amit a mérés során majd korrigálnunk kell.) Véges mágneses térben a térrel arányos, tipikusan mV-os nagyságrendű jelet tapasztalunk. A szenzorokban a mágnesezettség a 2b. ábrán jelölt \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% irányban áll, így \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0% irányú \setbox0\hbox{$H_{ext}$}% \message{//depth:\the\dp0//}% \box0% mágneses teret tudunk mérni. A KMZ10A és KMZ10A1 szenzorok közötti különbség, hogy a 10A szenzorban a preferált mágnesezési irány a forrasztólábakra merőleges irányú, míg a 10A1 szenzorban a forrasztólábakkal párhuzamos irányú. Ennek megfelelően a 10A szenzor a lábakkal párhuzamos, míg a 10A1 szenzor a lábakra merőleges irányban méri a teret. Ennek a különbségnek csupán akkor van jelentősége, ha egy gyakorlati felhasználás során csupán kevés hely áll rendelkezésre a szenzor számára. A lábak a mérés során általunk használt két eszközben a tekercsekhez képest ugyanabba az irányba állnak, így a nagy- és a kis tekercsek szerepe a két esetben felcserélődik a 3. ábrán jelölt módon. A szenzor valóságos elrendezését a 4. ábra látjuk. A vékonyrétegek meander formában helyezkednek el, a momentumok az ábra szerinti \setbox0\hbox{$H_x$}% \message{//depth:\the\dp0//}% \box0% irányban szeretnek beállni, és az áram a Wheatstone híd megfelelő karjaiban ±45°-os szögben folyik.

A szenzor működésével kapcsolatban fontos megjegyezni az ún. átfordulás (flipping) jelenségét. A mágnesezettség a vékony csíkok iránya által kijelölt, a 2b. ábra szerinti jelölésben \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% tengellyel párhuzamosan szeretnek beállni, de ezen belül egyaránt állhatnak \setbox0\hbox{$M_x > 0$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$M_x < 0$}% \message{//depth:\the\dp0//}% \box0% irányban is. A kétféle beállás eltérő kimenő jelet eredményez, mert a Barber pole elrendezésen átfolyó áram iránya eltérő szöget zár be a két mágnesezettség vektorral. A két beálláshoz tartozó kimeneti feszültséget mutatja a 5. ábra. Ez a két jel 45°-os Barber pole esetében a már korábban említett offsettől eltekintve pontosan egymás ellentéte. Gondoljuk végig, hogy miért!

A szenzor megbízható működéséhez ezért elengedhetetlen hogy a momentumok egységesen \setbox0\hbox{$M_x > 0$}% \message{//depth:\the\dp0//}% \box0% vagy egységesen \setbox0\hbox{$M_x < 0$}% \message{//depth:\the\dp0//}% \box0% irányban álljanak. Különböző irányban álló momentumok esetén a szenzort fel kell mágnesezni egy megfelelő nagyságú \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% irányú külső mágneses térrel. Egy \setbox0\hbox{$M_x > 0$}% \message{//depth:\the\dp0//}% \box0% irányban mágnesezett szenzor momentumait átfordíthatjuk \setbox0\hbox{$M_x < 0$}% \message{//depth:\the\dp0//}% \box0% irányba egy elegendően nagy és \setbox0\hbox{$(H_x < 0)$}% \message{//depth:\the\dp0//}% \box0%, azaz \setbox0\hbox{$-x$}% \message{//depth:\the\dp0//}% \box0% irányú külső mágneses térrel. Viszont ha az átfordításhoz nem használunk elegendő nagyságú teret, a momentumoknak csak egy része fordul át. Mit látunk a kimenő jelben részleges átfordulás esetén? Gondoljuk végig! (A momentumok részleges átfordulása túlzottan nagy \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% irányú külső tér hatására is előfordulhat. Ezért az 5. ábrán ábrázolt görbék - mivel azok \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0%-tól független \setbox0\hbox{$M_x$}% \message{//depth:\the\dp0//}% \box0%-et feltételeznek, csak egy elméleti számolás eredményei - nagy \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% esetén eltérhetnek a valós helyzetben mérhetőtől.)

5.ábra. A kimeneti feszültség (önkényes egységben) a mért tér függvényében (a mágnesezettséggel normálva) a két mágnesezettségi beállás esetében. A két jel egy offsettől eltekintve egymás ellentéte. Túl nagy \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% tér megzavarhatja az \setbox0\hbox{$M_x$}% \message{//depth:\the\dp0//}% \box0% mágnesezettséget, így nagy \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% esetén a valós esetben az itt ábrázolttól eltérő jelet láthatunk. Mennyi a túl nagy? Ez a szenzorban lévő kristálytól függ.

A mérés során a magnetorezisztív szenzorok karakterisztikáit LoggerPro számítógépes adatgyűjtő rendszer segítségével vizsgáljuk. A szenzorok egy kisméretű, függvénygenerátorral meghajtható tekercsben vannak elhelyezve, mely a 10A szenzor esetén az y, a 10A1 szenzor esetén az x irányú teret tudja változtatni. A kisméretű tekercset egy nagyobb, DC tápegységgel meghajtható tekercsbe helyezzük, mely a másik irányú teret biztosítja.

A szenzorkarakterisztikák meghatározásán kívül elektronikus iránytűt készítünk. A föld mágneses terének mérésekor a szenzort ún. flipping üzemmódban használjuk, azaz az egymást követő mérések között a szenzor mágnesezettségét átfordítjuk váltakozó előjelű \setbox0\hbox{$H_x$}% \message{//depth:\the\dp0//}% \box0% irányú mágneses tér alkalmazásával. Ez lehetővé teszi az offset feszültség kiküszöbölését, mivel a hasznos jel a két \setbox0\hbox{$M_x$}% \message{//depth:\the\dp0//}% \box0% iránnyal mért érték különbsége. Ezt a megoldást kis mágneses terek pontos érzékelésére lehet használni.

Óriás mágneses ellenállás jelensége

Az óriás mágneses ellenállás jelenségének megértéséhez képzeljük el a 6. ábrán feltüntetett elrendezést. Vegyünk két mágneses vékonyréteget, melyeket egy vékony, nemmágneses réteg választ el.


6.ábra

A felhasznált anyagok és a nemmágneses réteg vastagságának megfelelő megválasztásával elérhető, hogy a két mágneses vékonyréteg között egy ún. antiferromágneses csatolás alakul ki, magyarul külső mágneses tér hiányában a két réteg mágnesezettsége egymással ellentétes irányú lesz. Erre az elrendezésre megfelelő nagyságú külső mágneses teret kapcsolva a két réteg mágnesezettségét beforgathatjuk egymással párhuzamos irányba. A mágnesezettség párhuzamos (parallel, P) állása esetén a 6. ábra mutatott elrendezés ellenállása lényegesen kisebb, mint az ellentétes (antiparallel, AP) beállás esetén, így külső mágneses tér alkalmazásával jelentős ellenállás-csökkenést tudunk elérni. Ezt a jelenséget hívjuk óriás mágneses ellenállásnak. A jelenséget a következő egyszerű modellel szemléltethetjük: Bontsuk fel az elektromos áramot fel illetve le spinű elektronokra. A le spinű elektronok egy felfelé álló mágnesezettségű rétegen lényegesen nehezebben haladnak át, mint egy lefelé álló mágnesezettségűn. Jelöljük egy mágneses réteg ellenállását egy bizonyos spinű elektronokra nézve \setbox0\hbox{$R_1$}% \message{//depth:\the\dp0//}% \box0%-el ha a réteg mágnesezettségi iránya megegyezik az elektronok spinirányával, illetve \setbox0\hbox{$R_2$}% \message{//depth:\the\dp0//}% \box0%-vel, ha a mágnesezettség iránya ellentétes az elektronok spinirányával. A fel és le spinű elektronokat független áramcsatornaként kezelve parallel és antiparallel mágnesezettségű rétegek eredő ellenállása a 7. ábra szemléltetett helyettesítő képpel modellezhető.

7.ábra

Fejezzük ki a fenti két ellenállást \setbox0\hbox{$R_1 = R+\Delta R, R_2=R-\Delta R$}% \message{//depth:\the\dp0//}% \box0% alakban. Így a parallel és antiparallel beállás esetén az ellenállás:

\[ R_{AP} {{=}} \frac{R_1 + R_2}{2} {{=}}R \ \  ,\ \  R_p {{=}} \frac{2R_1R_2}{R_1 + R_2} {{=}}R- \frac{\Delta R^2}{R} < R_{AP} \]

Azaz a P elrendezés ellenállása valóban kisebb mint az AP elrendezésé.

Peter Grünberg és Albert Fert kísérleti munkájukkal megmutatták, hogy a GMR jelenséggel jelentős ellenállás-változást lehet elérni. Míg az anizotróp mágneses ellenállással elérhető ellenállás változás maximális értéke \setbox0\hbox{$\le$}% \message{//depth:\the\dp0//}% \box0%1%, az óriás mágneses ellenállás jelenségével egy nagyságrenddel nagyobb ellenállás-változást lehet elérni.

Az elektronikai iparban a mágneses ellenálláson alapuló technológiák első és máig is legjelentősebb felhasználása a merevlemezek olvasófejéhez kapcsolódik. Még az 1990-es évek elején is induktív olvasófejeket alkalmaztak: a merevlemezek olvasását a gyorsan forgó mágneses lemez által egy kis tekercsben indukált feszültség segítségével végezték. Az 1990-es évek közepén tértek át a magnetorezisztív technologiára, először anizotróp mágneses ellenálláson alapuló olvesófejeket alkalmaztak. Az AMR fejeknek köszönhetően jelentős tárolókapacitás-növekedést sikerült elérni, azonban előre látható volt hogy az AMR jelenség kis, pár százalékos nagysága a későbbiekben komoly korlátozó tényezővé válik. Az 1990-es évek vége óta a merevlemezekben GMR jelenségen alapuló olvasófejeket használnak.

8.ábra

A GMR olvasófejek az ún. spin-szelep elrendezést követik. A két mágneses rétegből az egyik rögzített, nehezen elfordítható irányú mágnesezettséggel rendelkezik, míg a másik egy könnyen forgatható mágnesezettségű réteg. Az utóbbi réteg mágnesezettsége az olvasófej alatt forgó merevlemezen tárolt bitek mágnesezési irányának megfelelően áll be, így az információ a spinszelep ellenállásának mérésével egyszerűen kiolvasható.

A mágneses rétegek két lehetséges (P, AP) beállási irányának köszönhetően a spinszelep nem csak információ olvasására, de információ tárolására is használható. Ezt használja ki a jelenleg fejlesztés alatt álló memóriaegység, az ún. MRAM (Magnetic Random Access Memory). Az MRAM működését a 8. ábra szemlélteti. Minden egyes bit egy spin-szelep, melynek az állapotát az ún. bit-vonalon keresztül lehet kiolvasni. A bit írásához mind a bit-vonalon mind a digit-vonalon keresztül nagy áramot folyatunk, így a két vezeték együttes szórt mágneses tere már át tudja fordítani a forgatható réteg mágnesezettségét. Ezzel a módszerrel a bit és digitvonal kereszteződésénél található bit külön írható a többi bit állapotának megváltoztatása nélkül.





Mérési feladatok:

  • 1. Feladat: Anizotróp mágnes ellenállás jelenségének vizsgálata KMZ10A magnetorezisztív szenzor segítségével.
10.ábra Az anizotróp mágneses ellenállás mérésére szolgáló mérőfej KMZ 10A érzékelővel. A külső tekercs állítja elő az állandó mágneses teret, a belső tekercs az y irányú tér változtatására, ebben van az érzékelő.
11. ábra Az anizotróp mágneses ellenállás mérésére szolgáló mérési összeállítás. Bal oldalon elől a mérőfej, felette az előerősítő, jobb oldalon az adatgyűjtő egység.
Állítsuk össze a mérési elrendezést. A DC jellel meghajtott nagy tekercset csatlakoztassuk a HAMEG 8040 tápegység egyik változtatható kimenetére, a magnetorezisztív szenzor tápfeszültségét pedig a HAMEG tápegység fix 5V-os kimenetéről szolgáltassuk 11. ábra. A GoldStar függvénygenerátorral előállított 2Hz-es háromszögjellel hajtsuk meg a kisméretű tekercset. A magnetorezisztív szenzor kimenetét kössük a LoggerPro interfészhez csatlakoztatható differenciális erősítőre, melyet ±20mV-os vagy ±200mV-os tartományban használjunk a mért jel nagyságától függően. (Az erősítő jelének méréséhez az interfész megfelelő bemenetét Voltage (0V to 5V) funkcióra állítsuk. Figyelem! A Vernier differenciális erősítő zérus bemenő feszültség esetén ~1.7V-os offset feszültséget ad ki, az ehhez képesti változást kell mérnünk!) A kis tekercs meghajtásához használt háromszögjelet közvetlenül kössük az interfész egyik bemenetére Voltage (-10V to 10V) állásban. Az interfész mintavételezését érdemes Repeat–re állítani, illetve a LoggerPro szoftver ábrájára kattintva beállíthatjuk, hogy a háromszögjel függvényében ábrázoljuk a szenzor jelét, így egy oszcilloszkóp X-Y funkciójához hasonló mérést tudunk végezni.
Mérjük meg a KMZ10A szenzor kimenő jelét a háromszögjellel meghajtott kis tekercs \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% terének függvényében (a kis tekercsre ±10V-os feszültséget adjunk). Ismételjük meg a mérést különböző \setbox0\hbox{$H_x$}% \message{//depth:\the\dp0//}% \box0% irányú segédterek mellett (A \setbox0\hbox{$H_x$}% \message{//depth:\the\dp0//}% \box0% teret a nagy tekercsre adott DC feszültséggel szabályozzuk 0-5V tartományban, 0,5V-os lépésekben). Értelmezzük a méréseinket! Hogyan függ az \setbox0\hbox{$U_{ki}$}% \message{//depth:\the\dp0//}% \box0%-\setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% karakterisztika meredeksége, illetve linearitási tartománya a \setbox0\hbox{$H_x$}% \message{//depth:\the\dp0//}% \box0% segédtér értékétől? Milyen furcsa jelenséget tapasztalunk kis \setbox0\hbox{$H_x$}% \message{//depth:\the\dp0//}% \box0% tereknél, és mi lehet ennek az oka? Kalibráljuk a kisméretű tekercs mágneses terét! (A szenzorok specifikáció szerinti tipikus érzékenysége zérus \setbox0\hbox{$H_x$}% \message{//depth:\the\dp0//}% \box0% segédtér, ill. 5V-os tápfeszültség mellett 80 mV/(kA/m))
  • 2. Feladat: Mágneses átfordulás jelenségének vizsgálata, hiszterézishurok mérése KMZ10A1 magnetorezisztív szenzor segítségével.
Az 1. feladatban leírtaknak megfelelően állítsuk össze a mérési elrendezést KMZ10A1 szenzor segítségével. A kis tekercsre adott háromszögjel segítségével mérjük ki a szenzor \setbox0\hbox{$U_{ki}$}% \message{//depth:\the\dp0//}% \box0%-\setbox0\hbox{$H_x$}% \message{//depth:\the\dp0//}% \box0% karakterisztikáját, különböző \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% értékek mellett! (A kis tekercsre ±10V-os feszültséget adjunk, a \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% teret a nagy tekercsre adott DC feszültséggel szabályozzuk 0-5V tartományban, 0,5V-os lépésekben.) Értelmezzük a méréseinket! Hogyan függ a hiszterézishurok szélessége a \setbox0\hbox{$H_y$}% \message{//depth:\the\dp0//}% \box0% tér értékétől? Kalibráljuk a nagyméretű tekercs mágneses terét!
  • 3. Feladat: az offset feszültség mérése. Zárjuk rövidre az erősítő bemenetét és az adatgyűjtővel mérjük meg a kimenő feszültséget. Az adatgyűjtő beállítása: mérési idő 10s, mintavétel: 200/s, megjelenítés:y tengely Potencial1, x tengely time. A kapott értéket vonjuk le az belőző két feladat mérési eredményeinek értékeiből.
  • 4. Feladat: elektromos iránytű készítése
A mágneses iránytű vizsgálatához tartozó mérési összeállítás.
A mágneses iránytű tekercsei az érzékelőkkel.
A mágneses iránytű mérési elrendezése.
Építsünk elektromos iránytűt a 2db. egymásra merőlegesen álló KMZ10A1 szenzorból és az átfordításhoz szükséges tekercsekből álló panel segítségével! A függvénygenerátorral állítsunk elő a nulla feszültség körül szimmetrikus négyszögjelet, melyet kapcsoljunk az átfordításhoz használt tekercsekre. A négyszögjel amplitudóját úgy állítsuk be, hogy a tekercsek tere meghaladja az átfordításhoz szükséges tér nagyságát. A mágneses momentumok ismételt átfordításával kiküszöbölhetjük a zavaró offset feszültséget, így egészen kis mágneses tereket is ki tudunk mérni. Mérjük meg a két szenzor kimenő jelét a mérőpanel különböző szögbeállásai mellett, és ábrázoljuk az adatokat a szög függvényében! Mennyire pontosan tudjuk meghatározni a mérési adatokból a mérőpanel irányát? Ellenőrizzük méréseink helyességét egy hagyományos iránytű segítségével! A mérőpanelt 10°-os lépésekben, 360°-ot forgatva fordítsuk el.
  • 5. Óriás mágneses ellenállás mérése

A méréshez az NVE Corporation AA típusú analóg mágneses érzékelőjét használjuk (http://www.nve.com/Downloads/catalog.pdf 14-15 oldal). Kéretik a katalógus bevezetőjét és a jelölt oldalakat figyelmesen áttanulmányozni. A tekercs adatai, amivel a mágneses teret előállítjuk: ellenállása 152,5 ohm, hossza 39 mmm, menetszáma 3000. Az érzékelőt 5V tápfeszültséggel működtessük, a tekercs meghajtására a Hameg HM-8040-es tápegységet (20V, 500mA) használjuk! Számolásaink során élhetünk az 1Oe=1G egyszerűsítéssel.

5.1 Feladat: Tekercs mágneses terének vizsgálata a hossztengelye mentén. Állítson be a tekercsen egy fix(pl 100mA) áramot.Az érzékelőt tartó asztalt a menetes orsó (menetemelkedése 1mm) segítségével vigye a szélső állásba, miáltal a szenzor a tekercsen kívül szélső állapotba kerül. Innen tolja milliméterenként beljebb a szenzort és olvassa le a kimenő feszültséget.Az asztal 50mm-t tolható, így a szenzor túlmegy a tekercs felén. Ábrázolja a mágneses indukciót a hely függvényében. Használjuk fel a katalógusban szereplő érzékenység-adatot. A szenzort rögzítő szigetelőszalagon levő vonás jelöli a szenzor pontos helyét. Ábrázolásnál az x=0 érték az legyen, amikor a szenzor éppen a tekercs szélénél van. A tekercs szerelvénye 5mm-rel túlnyúlik a tekercsen.
5.2 Feladat: Tekercs mágneses terének vizsgálata egy pontban, az áram függvényében. Az előző mérés eredményeit felhasználva állítsuk a szenzort a tekercs közepére. 5V híd-tápfeszültség mellett vegyük fel a mágneses tér- kimenő feszültség karakterisztikát mindkét térirány esetén, majd állapítsuk meg a szenzor érzékenységét. A tekercs áramát 10mA-es lépésekben változtassuk. Vessük össze a katalógus szerinti érzékenységből és a tekercs adataiból számított mágneses tér értékeit. Magyarázzuk meg az eltérés okát.
5.3 Feladat: Árammérés az érzékelővel. A rögzített érzékelő felett futó vezetékben változtassuk az áramot 10mA-es lépésekben és mérjük az érzékelő kimenő feszültségét. Ezzel kalibráltuk az elrendezést és a továbbiakban ismeretlen áram értékét meg tudjuk határozni. A mérési összeállítást tartalmazó panelt az asztal széléhez kell illeszteni, hogy a mérés folyamán nem mozduljon el. Mi lehet ennek az oka? Mivel a mérőhuzalnak nagyon kicsi az ellenállása, egy 10 Ohm-os ellenállást kötöttünk sorosan.
5.4 Az érzékelő mozgatása állandó mágnes terében - elmozdulásérzékelés. Az érzékelővel szembe (milyen irányú teret is érzékel?) helyezzük el a csavarmikrométerre rögzített állandó mágnest. A mágnes fonom mozgatásával (pl 0,1 mm-e lépésekben) vegyük fel a híd kimenőfeszültségét. A feszültségmérés hibájából becsüljük meg, hogy milyen pontosan tudunk pozíciót meghatározni a mágnestől 2-3 cm-es távolságban.
A tekercs mágneses terének vizsgálat a szenzorral.
A szenzor hitelesítése áramméréshez..

PDF formátum

A pdf formátumú leírás nem frissül tovább. Nyomtatáshoz használja az oldalsó menüsoron az Eszközök csoport Nyomtatható változat pontját.