Próbalap

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Halbritt (vitalap | szerkesztései) 2012. október 16., 12:57-kor történt szerkesztése után volt.


A mérés célja:

  • elmélyíteni a hallgatók termoelektromos effektusokkal kapcsolatos ismereteit,
  • megismertetni a hallgatókat a félvezető termoelemmel és a Peltier-elemmel (termoelektromos hűtő elemmel).

Ennek érdekében:

  • összefoglaljuk a félvezető termoelemmel és a Peltier-elemmel kapcsolatos elméleti tudnivalókat,
  • mérések segítségével meghatározzuk a félvezető termoelem és a Peltier-elem fontosabb jellemzőit,
  • a mért Seebeck és Peltier együttható hányadosából meghatározzuk az abszolút hőmérsékletet.

Tartalomjegyzék


Elméleti összefoglaló

A Hőmérsékletérzékelők hitelesítése című mérés elméleti részében részletesebben foglalkoztunk a két vezetőből készült termoelemek működésével és alkalmazásával. Most az ott elmondottakra is támaszkodunk.

Termoelektromos jelenségek

A félvezető termoelem és a Peltier-elem működését termoelektromos és hőtani folyamatok határozzák meg. A termoelektromos jelenségek elektromos és hőtani folyamatok közötti kapcsolatokat adnak meg. Összefoglalónkat ezen effektusok (a Seebeck-, a Peltier-, a Thomson-effektus) és a Joule-hő ismertetésével kezdjük, majd a tisztán hőtani folyamatok leírásával folytatjuk, míg végül megvizsgáljuk ezek együttes hatását a termoelem és a Peltier-elem viselkedésére.

A termoelektromos jelenségek fémek esetében is fellépnek, de az effektusok sokkal erősebbek félvezetők alkalmazásakor: például egy félvezető termoelem hőfoktényezője egy nagyságrenddel nagyobb, mint egy fém termoelemé. Ezért a gyakorlatban használt Peltier-elemek (termoelektromos hűtőelemek) is félvezetőkből készülnek és a mérésen is ilyet használunk.

Egy n- és p-típusú félvezetőből kialakított termoelemet mutat az 1/b ábra. Ha az A és B pont T_0 hőmérsékleten van és C pont hőmérséklete T, (T\neq T_0) az A és B pont között U feszültséget mérhetünk. Ez a Seebeck-effektus. Az effektusra jellemző az anyagtól és hőmérséklettől függő \alpha állandót az \alpha = \left( \frac{{\rm d}U}{{\rm d}T}\right)_{T_0}$ egyenlettel definiáljuk.

Ha a fenti összeállításon áram folyik, az áram irányától függően a C pontban hő szabadul fel, vagy hő nyelődik el. Ez a Peltier-effektus. Az egységnyi idő alatt felszabaduló vagy elnyelt hőnek megfelelő hőteljesítmény (P_P) arányos az I árammal: P_P=\frac{{\rm d}Q}{{\rm d}t}=\pi I=\alpha TI$ ahol Q a hő, \pi a Peltier-együttható, T az abszolút hőmérséklet, míg \alpha a Seebeck-együttható.

Amikor I áram folyik olyan homogén vezetőben, amelyben az áram irányába eső {\rm d}T/{\rm d}x gradiens van, az áram és a hőmérséklet gradiens irányától, valamint a vezető anyagától függően hő szabadul fel, vagy nyelődik el. Ez a Thomson-effektus. Az időegység alatt a vezető egységnyi hosszúságú részében fejlődő Thomson-hő arányos az áramerősséggel és a hőmérséklet gradienssel: P_T=\tau \frac{{\rm d}T}{{\rm d}x} I$ ahol \tau a vezető anyagától és a hőmérséklettől függő előjeles mennyiség, a Thomson-állandó. A Thomson-hő pozitív előjelű – azaz hő szabadul fel – ha \tau pozitív előjelű és az áram a magasabb hőmérsékletű hely felől az alacsonyabb hőmérsékletű hely felé folyik.

Az árammal átjárt vezetőben hő szabadul fel: az úgynevezett Joule-hő. A Joule-törvény értelmében a teljesítmény, ha R ellenállású vezetőn I áram folyik: Értelmezés sikertelen (lexikai hiba): P_J=I^2 R<div class="texdisplay"><latex display >\[\]</latex></div> Az eszköz működésével kapcsolatos "tisztán" hőtani folyamatok közül egyedül az elem belsejében lejátszódó hővezetés hatását vesszük figyelembe. Ha a meleg oldal <math>T_1

és a hideg oldal T_0 hőmérsékletű (T_1 > T_0), akkor a meleg oldalról a hideg oldal felé lejátszódó hővezetés teljesítménye: P_v=\lambda \frac{A}{d}\left(T_1-T_0\right)$ ahol \lambda a hővezető-képesség, A az elem keresztmetszetének területe és d a vastagság. A termoelemként és Peltier-elemként is használható eszköz vázlata a 1/d ábrán látható.
Termoelempeltier 1 abra.jpg
1. ábra


Félvezető termoelem

Ha két fémből (1 és 2) termoelemet hozunk létre (1/a ábra), az A és B pontok között mérhető feszültség a C pont T hőmérséklete és az A és B pont közös T_0 hőmérsékletének különbségétől (T-T_0), valamint a két fém anyagi minőségétől függ. A kapott feszültség nem függ a két fém C pontban történ összeforrasztására használt harmadik fém anyagi minőségétől. A fém termoelemhez hasonlóan, két különböző módon szennyezett félvezetőből is létrehozhatunk termoelemet. Ezek érzékenysége kb. egy nagyságrenddel nagyobb, mint a fémből készült termoelemeké. A félvezető termoelem vázlata az 1/b ábrán, perspektivikus rajza pedig az 1/c ábrán látható.

A termoelem egyik jellemzője az 1.1 részben bevezetett Seebeck-együttható, ami az l°C hőmérséklet-különbség hatására kialakuló termofeszültséget adja meg. Az első közelítésben a termoelem üresjárási feszültségének hőmérsékletfüggése az U_0=\alpha_{12}\left(T-T_0\right)$ összefüggéssel adható meg.

A vizsgálat tárgyát képező félvezető termoelem k darab p-n átmenetet tartalmaz, amelyek elektromosan sorba kapcsolódnak (1/d ábra), így feszültségük összeadódik: Értelmezés sikertelen (lexikai hiba): U=kU_0<div class="texdisplay"><latex display >\[\]</latex></div> Az átmenetek két alumínium lemezhez csatlakoznak, jó hővezető, de elektromosan szigetelő réteggel (1/d ábra). Az alumínium lemezek közül az egyik (a meleg oldal) <math>T_1

hőmérsékleten, míg a másik (a hideg oldal) T_0 hőmérsékleten van. Ilyen módon az elemek hőtani szempontból párhuzamosan kapcsolódnak.

Vizsgálatainkhoz a termoelemet két hőcserélő közé helyezzük (3/a ábra). A hideg oldalhoz csatlakozó hőcserélőn (alumínium tömb) csapvizet vezetünk keresztül és ennek az oldalnak a hőmérsékletét állandó (T_0) értéken tartjuk. A meleg oldalhoz csatlakozó alumínium tömbben ellenállás fűtőtest van, amit alacsony feszültségű külső áramforrás segítségével működtetünk. Így a meleg oldal hőmérsékletét változtatni tudjuk.

Ha különböző T_1 hőmérsékletek mellett megmérjük a termoelem U_0 üresjárási feszültségét, az U_0\left(T_1-T_0\right) összefüggést ábrázolva egyenest kapunk. Az egyenes meredeksége a Seebeck-együttható.

A termoelem fontos jellemzője a belső ellenállása. A belső ellenállást a Hőmérsékletérzékelők hitelesítése című jegyzetben leírtak (6. feladat) szerint mérhető.

Termoelemünk termikus energia hatására termel villamos energiát. Mekkora hatásfokkal teszi ezt? Erre a kérdésre a következő módon kaphatunk feleletet: A termoelemet belső ellenállásával azonos nagyságú ellenállással terheljük. Ekkor tudjuk kivenni a maximális elektromos teljesítményt. Ehhez a melegoldali alumínium tömböt kb. 20 W villamos teljesítménnyel felfűtjük, majd a fűtést kikapcsolva mérjük az időben csökkenő hőmérsékletet és a terhelő ellenálláson jelentkező villamos teljesítményt. Ha feltételezzük, hogy rendszerünk a környezettől jól szigetelt, akkor azt mondhatjuk, hogy a fűtött alumínium tömb által leadott hő hatására nyerünk elektromos teljesítményt. A leadott hőteljesítmény: P_h=\frac{{\rm d}Q}{{\rm d}t}=cm\frac{{\rm d}T}{{\rm d}t}$ ahol c és m az alumínium fajhője ill. a tömb tömege.

A fentiek alapján termoelem hatásfoka úgy állapítható meg, hogy a T(t) hűlési görbe vizsgált pontján meghatározzuk {\rm d}T/{\rm d}t értékét és az előzőképlet alapján számítjuk a hőteljesítményt (Értelmezés sikertelen (lexikai hiba): P_h$-t), miközben mérjük az ugyanezen időponthoz tartozó villamos teljesítményt: <math>P_v=\frac{U^2}{R}<div class="texdisplay"><latex display >\[\]</latex></div> Az átalakítás hatásfoka ezek után: <math>\eta=\frac{P_h}{P_v}<div class="texdisplay"><latex display >\[\]</latex></div> A fentiekből a hatásfok hőmérséklet-különbség függése [az <math>\eta(\Delta T)

kapcsolat] is meghatározható.

Peltier-elem

Az 1.1 részben áttekintett effektusok eredményeként röviden összefoglalva a vizsgált Peltier-elem belsejében a következő folyamatok játszódnak le:

  • Az áram irányától függően a Peltier-effektus miatt az egyik oldalon az átmenetnél hő nyelődik el (hideg oldal, T_0 hőmérsékleten), másik oldalon hő szabadul fel (meleg oldal, T_1 hőmérsékleten).
  • A Thomson-effektus következtében a félvezető elemek anyagától függően az elem belsejében hő szabadul fel vagy nyelődik el.
  • A Joule-hő következtében az elem belsejében hő fejlődik. Ezt egyszerűség kedvéért úgy tekintjük, hogy egyenlő arányban jut a két felületre.
  • A hővezetés eredménye egy a meleg oldalról a hideg oldal felé történő hőáramlás.

Az elmondottak alapján a Peltier-elem hideg oldalán a hűtőteljesítmény: Értelmezés sikertelen (lexikai hiba): P_H=\alpha T_0 I - \tau \frac{T_1-T_0}{2} I - \frac{I^2 R}{2} - \lambda \frac{A}{d}\left(T_1-T_0\right)<div class="texdisplay"><latex display >\[\]</latex></div> A meleg oldal fűtő teljesítménye: <math>P_H=\alpha T_1 I + \tau \frac{T_1-T_0}{2} I + \frac{I^2 R}{2} - \lambda \frac{A}{d}\left(T_1-T_0\right)<div class="texdisplay"><latex display >\[\]</latex></div> Az elektromos teljesítmény: <math>P_E=\alpha \left(T_1-T_0\right) I + \tau \left(T_1-T_0\right) I + I^2 R=U_p I_p<div class="texdisplay"><latex display >\[\]</latex></div> A Peltier-elem energetikai folyamatait a 2. ábra szemlélteti. A hőerőgépek és a hűtőgépek működése az ideális Carnot-körfolyamat segítségével közelíthető. Hőerőgépként a Carnot-gép <math>W

munkát végez, miközben a rendszer a magasabb T_1 hőmérsékletű hőtartályból Q_1 hőmennyiséget vesz fel, míg a kisebb T_0 hőmérsékletű hőtartálynak Q_0 hőt ad le. Az így nyert munka W=Q_1-Q_0. A gép hatásfoka illetve maximális hatásfoka pedig rendre \eta=W/Q_1 ill. \eta_{max}=\left(T_1-T_0\right)/T_1. (Így működik a termoelem.) Hűtőgépként (hőszivattyúként) a Peltier-elem fordított Carnot-gépnek tekinthető. Külső W munka befektetése árán a hidegebb T_0 oldalról Q_0 hőt von ki, míg a melegebb oldalon Q_1=W+Q_0 hőt ad le. A folyamat teljesítménytényezője \varepsilon=Q_0/W ill. \varepsilon_{max}=T_0/\left(T_1-T_0\right). Vegyük észre, hogy \varepsilon > 1 is lehet. A hatásfok ill. teljesítménytényező a megfelelő teljesítmények segítségével is kifejezhető.
Termoelempeltier 2 abra.jpg
2. ábra

A Peltier-elem vizsgálatához használt eszköz a félvezető elemből és a két oldalára szerelt fémtömbökből áll (3/b ábra). Az egyik tömb vízzel hűthető (így T_0 hőmérséklete közel állandó), míg a másik oldal hőszigetelt és fűthető. Ennek megfelelően, a változó hőmérsékletű oldal hőháztartását az alábbi egyenlet írja le: cm\frac{{\rm d}T}{{\rm d}t}=-P_h+P_f-\lambda\frac{A}{d}\left(T-T_0\right)$ ahol c és m a tömb tömege ill. fajhője, P_h a hőszivattyúként működtetett Peltier-elem által kivont hőteljesítmény, P_f a fűtőteljesítmény, míg a harmadik tag a Peltier-elemen keresztül hővezetéssel átjutó ismeretlen hőteljesítmény. Termikus egyensúlyban a baloldal 0, vagyis a jobboldali tagok kiejtik egymást.

Legyen kezdetben T=T_0. Ha a Peltier-elemet a fűtés bekapcsolása nélkül P_p=U_p I_p elektromos teljesítmény befektetése mellett működtetjük, T olyan értékre áll be, melynél P_h=\lambda (A/d)\left(T_0-T\right). P_p növelésével P_h, és ezzel a hőmérséklet-különbség is nő. Mivel azonban \lambda (A/d) ismeretlen, a teljesítménytényező így nem határozható meg.

Az \varepsilon teljesítménytényező meghatározásához állandó teljesítménnyel működtetjük a Peltier-elemet, miközben változó P_f fűtőteljesítmény mellett vizsgáljuk a kialakuló T_0-T egyensúlyi hőmérséklet-különbségeket. Alkalmasan választott fűtőteljesítmény esetén a két oldal közti hőmérséklet-különbség eltűnik. Ekkor a P_f=U_f I_f fűtőteljesítmény éppen megegyezik a Peltier-elem által a vízhűtött oldalra átszivattyúzott P_h hőteljesítménnyel (P_h=P_f), vagyis a teljesítménytényező az \varepsilon=P_f/P_p összefüggés alapján számítható.

Akkor, amikor a hőmérséklet-különbség eltűnik, meghatározható a Peltier-elem belső ellenállása és a Peltier-együttható értéke is.

LaTex syntax error
\setbox0\hbox{$\Delta T=0 estében nem keletkezik termofeszültség, így a Peltier-elem belső ellenállása az R=\frac{U_p}{I_p}$}%
\message{//depth:\the\dp0//}%
\box0%
</math> képlettel meghatározható. LaTex syntax error
\setbox0\hbox{$\Delta T=0 estében nincsen hővezetés (és Thomson-hő) se, így a Peltier-együttható a definiáló képlet alapján könnyen kifejezhető: \pi=\frac{P_P}{I}=\frac{P_f+\frac{1}{2}P_p}{I_p}=\frac{P_f}{I_p}+\frac{U_p}{2}$}%
\message{//depth:\the\dp0//}%
\box0%
</math> (A Peltier-elemnek a fűtőellenállás által leadott teljesítményt és a Peltier-elemre kapcsolt, Joule-hőként felszabaduló elektromos teljesítmény felét kell átszivattyúznia.)


Mérési elrendezés

A termoelem és a Peltier-elem vizsgálatához – kicsit különböző elrendezésben – ugyanazt az eszközt használjuk (3/a és 3/b ábra). A mérőeszköz két 50 g-os alumínium tömbből ill. közöttük elhelyezkedő 98 db sorba kötött p-n átmenetből áll. Az eszköznek a külső környezettel történő hőcseréjét többrétegű szigetelés akadályozza. Az egyik tömb hőmérsékletét vízhűtés rögzíti, míg a másik oldal egy tápegységgel (max. 25 V, 5 A) fűthető. A fűtőteljesítményt áram- és feszültségmérés alapján, az alumínium tömbök hőmérsékletét a Pt-hőmérők ellenállásából a t(^{\circ} C)=\frac{1}{0,0039}\left(\frac{R(\Omega)}{100}-1\right)$ összefüggés alapján számítjuk.

A termoelem kimenetén mérhető a termofeszültség és a terhelő áram (3/a. ábra).

A Peltier-elem működtetéséhez egy másik tápegységet (max. 40 V, 10 A) használunk (3/b ábra). A Peltier-teljesítményt áram- és feszültségmérés alapján számítjuk.

Termoelempeltier 3a abra.jpg
Termoelempeltier 3b abra.jpg
3/a ábra 3/b ábra


Mérési feladatok

  • A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.

1. Határozza meg a félvezető termoelem elektromotoros erejét a hőmérséklet függvényében! Ábrázolja az elektromotoros erő – hőmérséklet-különbség összefüggést és határozza meg a Seebeck-állandót. A fűtőellenállásra kezdetben kb. 2 V, majd egyre nagyobb (max. 20 V) feszültséget kapcsolva folyamatosan fűtse a meleg oldalt, és néhány percenként olvassa le a hőmérséklet (ellenállás) és üresjárati feszültség értékeket.

  • Az ellenállás alapján számított hőmérséklet: Értelmezés sikertelen (lexikai hiba): t(^{\circ} C)=\frac{1}{0,0039}\left(\frac{R(\Omega)}{100}-1\right)<div class="texdisplay"><latex display >\[\]</latex></div> '''2/a''' Határozza meg a termoelem belső ellenállását! Az első feladat utolsó fűtőteljesítményének beállított értékén folytassa a fűtést a véghőmérséklet eléréséig, és ott határozza meg a termoelem belső ellenállását. * ''Ilyen mérést végzett már a [[Hőmérsékletérzékelők hitelesítése]] közben is! * Emlékeztetőül: A termoelem belső ellenállásához mérni kell ** a termoelem üresjárati feszültségét (<math>U_0

),

    • a termoelem áramát egy ismert ellenálláson keresztül (I). Ez az ismert ellenállás maga az árammérő is lehet, pl. 20 mA vagy 200 mA méréshatáron.
    • Az árammérő ellenállását (R_A, ami természetesen függ a méréshatártól) egy ellenállásmérő segítségével lehet megmérni. Az ellenállásmérőt egyszerűen rákötjük a – más áramkörbe ezalatt be nem kötött! –, megfelelő méréshatárra beállított árammérőre.
    • U_0, I és R_A ismeretében az R_b belső ellenállás számolható.
  • Milyen méréshatárra állított árammérővel terheli a termoelemet? Miért?
  • Mekkora az árammérő belső ellenállása ezen a méréshatáron?
  • Hogyan fejezhető ki R_b a mért mennyiségek segítségével?

2/b Határozza meg a termoelem hatásfokát!

A belső ellenállás meghatározása után kapcsoljon a belső ellenállással kb. megegyező ellenállást a termoelem kivezetéseire. Ehhez használjon ellenállásdekádot.

A terhelés hatására csökkenni fog a kialakult hőmérséklet-különbség. Várja meg, amíg a hőmérséklet-különbség egy új értéken állandósul. Mérje meg ekkor a termoelem kimenetén (a terhelő ellenálláson) a kapocsfeszültséget. Számítsa ki a terhelő ellenálláson leadott teljesítményt (a hasznos teljesítményt) és – a fűtőteljesítmény ismeretében – a termoelem hatásfokát.

3. Mérje meg 5 W Peltier-teljesítmény esetén (a fűtőtest kiiktatásával) a kialakuló hőmérséklet-különbséget! Mérje a hőmérsékletet 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a kialakuló max. (állandósult) hőmérséklet-különbséget!

  • A változó hőmérsékletű (a Peltier-elemmel hűtött) oldal hőmérsékletét számítógépes adatgyűjtő segítségével mérje az idő függvényében.

4. Mérje rögzített Peltier-teljesítmény és különböző fűtőteljesítmények mellett a kialakuló hőmérséklet-különbségeket és ábrázolja ezeket! Peltier-teljesítmény 5 W, fűtőteljesítmények: 3-11 W között 3-4 értéken mérve. A Peltier-elemet működtető tápegységet állandó feszültségen használja, és minden esetben írja fel az áramértékeket is! Mérje a hőmérsékletet esetenként 10 percig és a függelékben megadott összefüggések illesztésével határozza meg a fenti teljesítményeknél kialakuló max. hőmérséklet-különbségeket!

  • A változó hőmérsékletű (a Peltier-elemmel hűtött, a fűtőellenállással viszont fűtött) oldal hőmérsékletét számítógépes adatgyűjtő segítségével mérje az idő függvényében.

5. Az állandósult hőmérséklet-különbség – fűtőteljesítmény kapcsolat alapján számítsa ki a Peltier-elem teljesítmény-tényezőjét és belső ellenállását!

  • Ehhez ábrázolja az állandósult hőmérséklet-különbséget a fűtőteljesítmény függvényében, és egyenesillesztéssel határozza meg, milyen fűtőteljesítménynél lenne nulla a hőmérséklet-különbség.
  • A nulla hőmérséklet-különbséghez tartozó Peltier-áramot interpolálással határozza meg.
  • A Peltier-elem belső ellenállására kapott eredményét hasonlítsa össze a termoelem belső ellenállásával.

6. Határozza meg a Peltier-együtthatót! A Seebeck-együttható és a Peltier-együttható ismeretében számítsa ki a T_0 abszolút hőmérsékletet!


Függelék

  • A termikus egyensúly beállása viszonylag hosszú időt igényel. Ezért a T_\infty véghőmérséklet meghatározásánál kihasználjuk, hogy a fűthető oldal hőmérsékletének (T) időbeli változása jó közelítéssel exponenciális jellegű: T(t)=T_\infty+\left(T_0-T_\infty\right)\exp(-t/\tau)$ ahol T_0 a hőmérséklet kezdeti értéke, míg \tau a hőmérséklet-változás karakterisztikus ideje.




Teszt (1)

\[\frac{1}{2}\cdot\sqrt[3]{125}\]


Alma \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% körte \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0%

\[(a+b)^2=a^2+2a\cdot b+b^2\]

Alma \(n \mathbf{n}\) körte \(x\) \[(a+b)^2=a^2+2a\cdot b+b^2\]



 !!! Ami kellene !!!


Köbgyök:
\displaystyle \sqrt[3]{125}
  • WikiTex dokumentáció
  • tömbök, mátrixok


\[\begin{matrix} a & b & c \\ a & b & c \\ a & b & c_1 \end{matrix} \]
\begin{matrix}
a & b & c \\
a & b & c \\
a & b & c
\end{matrix}


\[\begin{array}{ccc} a & b & c \\ a & b & c \\ a & b & c \end{array} \]
\begin{array}{ccc}
a & b & c \\
a & b & c \\
a & b & c
\end{array}


\[\begin{bmatrix} a_{11}&a_{12}&a_{13}&\dots&a_{1n}\\ a_{21}&a_{22}&a_{23}& &a_{2n}\\ a_{31}&a_{32}&a_{33}&\dots&a_{3n}\\ \vdots& &\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&a_{m3}&\dots&a_{mn} \end{bmatrix}\]
\begin{bmatrix}
a_{11}&a_{12}&a_{13}&\dots&a_{1n}\\
a_{21}&a_{22}&a_{23}& &a_{2n}\\
a_{31}&a_{32}&a_{33}&\dots&a_{3n}\\
\vdots& &\vdots&\ddots&\vdots\\
a_{m1}&a_{m2}&a_{m3}&\dots&a_{mn}
\end{bmatrix}
  • egyenletek kapcsos zárójellel összefogva az egyik oldalon


\[\begin{cases} a &= b \\ y' &= y \\  z' &= z \\ t' &= t \end{cases}\]
\begin{cases}
a &= b \\
y' &= y \\ 
z' &= z \\
t' &= t
\end{cases}
  • (esetleg) egyenletek tördelése és igazítása egy bináris operátorhoz/relációhoz

Ez a Wikipédián működött:

\begin{align}f(x)&=a+b\\
&=c+d\end{align}\!

split

\[ \begin{split} 100 &= 1+8+27+64 = {}\\     &= 1+3+5+7+9+{}\\     &\quad+11+13+15+17+19 \end{split} \]


\[\begin{split} H_c&=\frac{1}{2n} \sum^n_{l=0}(-1)^{l}(n-{l})^{p-2} \sum_{l _1+\dots+ l _p=l}\prod^p_{i=1} \binom{n_i}{l _i}\\ &\quad\cdot[(n-l )-(n_i-l _i)]^{n_i-l _i}\\ &\quad\cdot \Bigl[(n-l )^3-\sum^p_{j=1}(n_i-l _i)^2\Bigr]. \end{split}\]

x

Címben: $$\boldsymbol{a^2+b^2=c^2}$$


egyszer volt, hol nem volt

\[ D^{a+2}_1                                 \qquad \sum_{i=1}^5                              \qquad \textstyle \sum_{i=1}^5                   \qquad \sum_{\substack{ a \le 5 \\                  b < 3}}                  \qquad \displaystyle\sum_{\substack{ a \le 5 \\                  b < 3}}                  \qquad \sideset{_a^b}{_c^d}\prod                 \qquad \displaystyle\sideset{_a^{b+1}}{_{c-1}^d}\sum_{i=n}^{x+y} \]
\[\left(\frac34\right)       \qquad \left\{\frac5{15}\right\}  \qquad  \left<\frac14\right|       \qquad  \left.\frac{11}{14}\right) \qquad \left[\frac68\right.       \qquad \]
\[ \binom12                   \qquad \binom{x}{y}               \qquad \]


\[ f(x)=\begin{cases}    1  & \text{ha $x>0$} \\   0  & \text{ha $x=0$} \\   -1 & \text{egyéb esetekben}  \end{cases} \]
\[ a \overset{\mathrm{def}}{=} b + c       \qquad a \overset{?}{<} b                      \qquad x = y \underset{\cdot}{+} z             \qquad \]
\[ \int            \qquad  \int_a^b        \qquad \int\limits_a^b \qquad \iint           \qquad \iiint          \qquad \idotsint       \qquad  \underbrace{\idotsint}_n        \qquad \]

Táblázatok


\[   \begin{array}{c||c|c|c|c|c|}       {\bf +}   & 0x & 1 & 2 & 3 & 4 \\     \hline\hline        0        & 0 & 1 & 2 & 3 & 4 \\     \hline        1        & 1 & 2 & 3 & 4 & 0 \\     \hline        2        & 2 & 3 & 4 & 0 & 1 \\     \hline        3        & 3 & 4 & 0 & 1 & 2 \\     \hline        4        & 4 & 0 & 1 & 2 & 3 \\     \hline   \end{array}   \qquad \text{és} \qquad   \begin {array}{c||c|c|c|c|c|}       {\bf *}   & 0 & 1 & 2 & 3 & 4 \\      \hline\hline        0        & 0 & 0 & 0 & 0 & 0 \\     \hline        1        & 0 & 1 & 2 & 3 & 4 \\     \hline        2        & 0 & 2 & 4 & 1 & 3 \\      \hline        3        & 0 & 3 & 1 & 4 & 2 \\     \hline        4        & 0 & 4 & 3 & 2 & 1 \\ \hline \end{array} \]

\int_x^2

Összehasonlítás


\displaystyle c=\sqrt{a^2+b^2}


\[c=\sqrt{a^2+b^2}\]

Szövegközi


Lássuk \setbox0\hbox{$yy$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$xx^2$}% \message{//depth:\the\dp0//}% \box0% mellet \setbox0\hbox{$g(xx)$}% \message{//depth:\the\dp0//}% \box0% értéke \setbox0\hbox{$g(xx)=\frac{1}{x}\cdot a$}% \message{//depth:\the\dp0//}% \box0% lesz.

Tovább


alma körte
\[x=x^3\cdot y\]
mogyoro