„Szilárdtestfelületek analízise Auger elektron spektroszkópiával” változatai közötti eltérés

A Fizipedia wikiből
a
 
(2 szerkesztő 43 közbeeső változata nincs mutatva)
21. sor: 21. sor:
  
 
__TOC__
 
__TOC__
 
'''''Szerkesztés alatt!'''''
 
  
 
==Elméleti összefoglaló==
 
==Elméleti összefoglaló==
===Az AES módszer fizikai alapjai===
+
===Az AES módszer elve===
Pierre Auger francia fizikus röntgensugárzással gerjesztett argon atomok gerjesztési folyamatainak Wilson-féle ködkamrában történő tanulmányozása folyamán fedezte fel a róla elnevezett effektust 1925-ben. Ezt követően csak kb. 40 év után kezdődött el az AES módszer széleskörű gyakorlati felhasználása.
+
Pierre Auger francia fizikus röntgensugárzással gerjesztett argon atomok gerjesztési folyamatainak Wilson-féle ködkamrában történő tanulmányozása folyamán fedezte fel a róla elnevezett effektust 1925-ben. Ezt követően csak kb. 40 év után kezdődött el az AES (Auger elektron spektroszkópia) módszer széleskörű gyakorlati felhasználása. Napjainkban az AES módszert elsősorban szilárdtest felületek vizsgálatára alkalmazzák. Ennek folyamán a vizsgálandó felületet valamilyen primer gerjesztés hatásának tesszük ki, ami elsősorban 1-10 keV-os elektronnyalábbal való bombázást jelent, de elektromágneses sugárzás vagy ionnyaláb is lehet a gerjesztő hatás. Az ekkor keletkező un. Auger elektronok energiáinak mérésével lehet a minta összetételét meghatározni.  
  
Napjainkban az AES módszert elsősorban szilárdtest felületek vizsgálatára alkalmazzák. Ennek folyamán a vizsgálandó felületet valamilyen primer gerjesztés hatásának tesszük ki, ami elsősorban 1-10 keV-os elektronnyalábbal való bombázást jelent, de elektromágneses sugárzás vagy ionnyaláb is lehet a gerjesztő hatás. Az ekkor végbemenő Auger-folyamatot az 1. ábrán szemléltetjük, és az alábbiak szerint értelmezzük.
+
A vizsgálandó anyagban a primer gerjesztés hatására végbemenő Auger-folyamatot az [[#fig:1|1. ábrán]] szemléltetjük, és az alábbiak szerint értelmezzük.
 +
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
| {{fig|1. ábra az elektron gerjesztés Auger-folyamat elvi sémája.JPG|fig:1|Az elektron gerjesztés Auger-folyamat elvi sémája 1. ábra}}
 +
|}
  
Egy belső, például a K-héjon lévő elektront a primer részecske eltávolít az atomi kötelékből. Az így szabaddá váló energianívóra egy magasabb, például az L1 nívóról lép be egy elektron. A felszabaduló energiát például az L2 nívón lévő elektron veszi át, ami egy jól meghatározott, karakterisztikus energiával kilép a felületből. Ezt az elektront nevezzük KL1L2, vagy általánosabban KLL Auger-elektronnak. Itt jegyezzük meg, hogy a gyakorlat számára legfontosabb, nagy elektronhozammal rendelkező Auger-elektronok esetén az Auger-folyamatban résztvevő második, és harmadik elektronhéj egybeesik, így az anyagok zöménél a KLL, LMM Vagy MNN Auger-elektronok a (leggyakoribbak. (Az Auger-spektroszkópia fizikai alapjairól és alkalmazási területeiről ad áttekintést az /1/, /2/, /3/ szakirodalom.)
+
Egy belső, például a K-héjon lévő elektront a primer részecske eltávolít az atomi kötelékből. Az így szabaddá váló energianívóra egy magasabb, például az L<sub>1</sub> nívóról lép be egy elektron. A felszabaduló energiát például az L<sub>2</sub> nívón lévő elektron veszi át, ami egy jól meghatározott, karakterisztikus energiával kilép a felületből. Ezt az elektront nevezzük KL<sub>1</sub>L<sub>2</sub>, vagy általánosabban KLL Auger-elektronnak. Itt jegyezzük meg, hogy a gyakorlat számára legfontosabb, nagy elektronhozammal rendelkező Auger-elektronok esetén az Auger-folyamatban résztvevő második és harmadik elektronhéj egybeesik, így az anyagok zöménél a KLL, LMM vagy MNN Auger-elektronok a leggyakoriabbak.
  
A K-héjon lévő megüresedett hely jelenléte esetén az L-héjon tartózkodó elektron energiaviszonyai hasonlóak azokhoz, melyekkel a hidrogénszerű ionokban lévő L-elektronok rendelkeznek. A finomstruktúrát most nem számítva, a küIönbség annyi, hogy a +Ze töltés (Z a rendszám, "e" az elemi töltés), amely meghatározza azt az elektromos teret, melyben az L-héjból a K-héjba átmenő elektron van, a mag +Ze valódi töltésénél a mag töltését leárnyékoló elektron töltésével kisebb. Természetesen a pontosabb leírásnál figyelembe kell azt is venni, hogy energetikailag három különböző L-állapot lehetséges.
+
A továbbiakban határozzuk meg, az atomból emittálódó Auger-elektron energiáját nullad rendű közelítésben. Legyenek E<sub>K</sub>, E<sub>L1</sub> és E<sub>L2</sub> a megfelelő héjakhoz tartozó ionizációs energiák. Amikor az L<sub>1</sub> héjon lévő elektron betölti a K héjon lévő üres helyet $E_K - E_{L1}^*$ energia szabadul. (A csillag felső index azt jelzi, hogy az adott atomi nivó egy gerjesztett atom energia nívója.) Igy az L<sub>2</sub> nivóról távozó Auger elektron mozgási energiája:
A továbbiakban tekintsük át röviden egy, az atomból emittálódó Auger-elektron energiáját meghatározó tényezőket.
+
$$E_{KLL} {{=}} E_K-E_{L1}^* - E_{L2}^*$$
Egy tetszőleges, W X, és Y elektronhéjak által megvalósított Auger folyamatban keletkező Auger-elektron E<sub>W,X,Y</sub>(Z) energiája nemcsak az elektronhéjak E<sub>W</sub>, E<sub>x</sub> és E<sub>Y</sub> ionizációs energiáitól, illetve az illető elem Z rendszámától függ. Ezt az energiaértéket több tényező is befolyásolja, melyek közül a három legfontosabb a következő:
+
Nullad rendű közelítésben az egyes ionizációs energiákat az adott atomi nívók energiáival azonosíthatjuk. Azonban ez nem veszi figyelembe, hogy az Auger folyamatban egyszeresen és kétszeresen ionizált állapotú atomok szerepelnek, továbbá azt sem hogy az elektronok szilárd testetből származnak. Mindezeket figyelembe vevő számítások bonyolultak, viszont kisérletileg jól kimérhetőek az egyes elemekre jellemző Auger átmenetek energiái. Ezekről ad áttekintést a [[#fig:2|2. ábra]].
* Az E<sub>W</sub>, E<sub>x</sub> és E<sub>Y</sub> értékek általában az egyszeresen ionizált állapothoz tartozó ionizációs energiák, míg az Auger-folyamatnál a végső állapot hétszeresen ionizált.
+
{|  cellpadding="5" cellspacing="0" align="center"
* A szilárdtesteknél az elektronnak a vákuumba való vitelekor az energiamérlegnél figyelembe kell venni az elektron kilépési munkáját (E<sub>ki</sub>) is.
+
|-
* Az Auger-elektronok energiáját a mátrix-környezet is befolyásolja, vagyis az, hogy milyen elemekkel, vegyületekkel és milyen módon kötött az elektront emittáló atom.
+
| {{fig|Auger_02.png|fig:2|A legfontosabb Auger elektron energiák 2. ábra}}
 +
|}
 +
Megjegyezzük még, hogy ha az Auger-átmenetben a valencia-sáv is részt vesz, akkor az Auger elektron energiák, illetve ezek eltolódásainak mérésével következtetéseket lehet levonni a mintát alkotó atomok kötésviszonyairól is.
 +
==AES berendezések felépítése==
 +
Az AES mérések ultravákuum körülményeket igényelnek. Erről a felületanalitikai mérési módszerek általános bevezetőjében beszeltünk. Az AES berendezések két fő egysége a primer elektron forrás és az energia analizátor a detektorral.
  
Az első két szempontot is figyelembe véve, az Auger-elektron energiája az alábbi félempirikus összefüggéssel adható meg:
+
===Primer elektron forrás===
{{eq|E_{WXY}(Z) {{=}}E_W(Z) - E_X(Z) - E_Y(Z + d) - E_{ki}|eq:1|(1)}}
+
Auger elektronokat többféle módon is ki lehet váltani, például röntgen sugárzással, elektron vagy ionbombázással. Gyakorlatban azonban az elektronbombázásos gerjesztés terjedt el. Ennek fő előnye, hogy viszonylag könnyű és olcsó létrehozni megfelelő energiájú és intenzitású elektronokat. Az elektronsugár elektrosztatikusan jól fókuszálható és mozgatható. Jól fókuszált elektronnyaláb esetén a minta szekunder elektron képét is elő lehet állítani, ami lehetővé teszi a minta tetszőleges pontjának kémiai analízisét. Hasonló módon így arra is van mód, hogy elemeloszlás térképet is vegyünk fel. Az ilyen berendezések szokásos elnevezése SAM (Scanning Auger Microprobe). Az Auger berendezésekben használt ionágyúk általában 0-10 keV energiájú elektronok előállítására alkalmasak. Általában 3-5 keV energiájú elektronokkal lehet a legnagyobb intenzitású Auger áramot gerjeszteni, de a jobb fókuszálhatóság érdekében sokszor nagyobb energiákat is használnak. A gerjesztő nyaláb intenzitása a megfelelő érzékenység elérése érdekében 10<sup>-6</sup>-10<sup>-9</sup> A kell legyen.
ahol a d korrekciós tag értéke az anyagi minőségtől függően 1/2 és 3/4 közé esik. Az Auger-energiák értekei a 2. ábrán tálhatók.
+
  
A harmadik perturbáló hatást, az un. kémiai eltolódást (chemical shift) nehéz mennyiségileg pontosan meghatározni, mivel nagyságát 3 energiaszint változása is befolyásolja. Általában azt mondhatjuk, hogy egy WXY Auger-átmenetnél a kémiai  eltolódás nagysága:
+
===Energia analizátor===
{{eq|\Delta E {{=}} E_W - E_X - E_Y - \left (E_W + \Delta W - E_X - \Delta X - E_Y - \Delta Y \right ){{=}} \Delta W + \Delta X + \Delta Y|eq:2|(2)}}
+
Az elektronok energia szerinti analízisét elektrosztatikus eltérítésű analizátorokkal lehet elvégezni. Az analizátorban az elektromos tér az elektronokat mozgási energiájuk függvényében más és más pályára kényszeríti, és ez teszi lehetővé szeparációjukat. Az energiafelbontást (tehát azt, hogy milyen energiakülönbségű elektronokat tudunk egymástól elkülöníteni) az analizátor típusa és műszaki paraméterei (pl. mérete) határozzák meg.  
ahol a $\Delta W$, $\Delta X$ és $\Delta Y$ a megfelelő W, X és Y elektronhéjak energiaeltolódósai, amelyeknek a mátrix- környezettől függő nagyságai nem egyenlőek. A helyzetet tovább komplikálja, ha az Auger-átmenetben a valencia-sáv is részt vesz.
+
  
A tanszéki Iaboratóriumban az AES méréseket egy un. SAM (Scanning Auger Microprobe) berendezésen végezzük. A SAM módszer az eddig tárgyalt AES módszertől elviekben nem különbözik, amennyiben a módszer alapja a SAM-nál is az emittált Auger-elektronok energiaanalízise, majd ez alapján a minta összetevőinek megállapítása. A különbség a két módszer között az, hagy a SAM-nál lehetőség van a primer elektronnyaláb pásztázására, és ezáltal egyrészt a vizsgálandó mintafelület topográfiai kepét lehet megjeleníteni, másrészt -és ez a fő előnye- a pásztázás révén mód van arra, hogy egyes kiválasztott elemeknek felvegyük és szükség esetén lefényképezzük a felületi eloszlás képét.
+
Gyakran használják a CMA (hengeres tükör) analizátorokat, melyekben az elektronok szétválasztása két koaxiális henger közötti logaritmikus elektromos térben zajlik. CMA-val jó intenzitású, de gyengébb felbontású spektrumok vehetők fel. A CMA-nál a minta elhelyezésére szigorú geometriai megszorítások vonatkoznak.
===Az emittált Auger elektron-áramot meghatározó tényezők===
+
Az előzőekben már láttuk, hogy a vizsgálandó mintafelületből a becsapódó primer elektronok karakterisztikus energiája Auger-elektronokat váltanak ki. Az alábbiakban ismertetjük az elektron hozamot meghatározó tényezőket. Legyen az i. elemben a WXY Auger-átmenetnél keletkező, és a $\Delta \Omega$ térszögú akceptancia (fogadó) nyílással rendelkező AES berendezés által detektált Auger elektronáram $I_i(WXY)$.
+
Ekkor első közelítésben:
+
{{eq|I_i(WXY) {{=}} \frac{\Delta \Omega}{4\pi} \int\limits_0^{\infty} I_p(z) \cdot P_i(WXY) \cdot \sigma_i(E_W) \cdot N(z) \cdot X_i(z) \cdot F \left ( \alpha \right ) \cdot T(E_{WXY}) \cdot D(E_{WXY}) \cdot \exp \left [\frac{-z}{\lambda_i \cos \alpha}\right] dz|eq:3|(3)}}
+
ahol
+
  
$I_p(z)$ a gerjesztő áramerőssége mélységben,
+
A koncentrikus félgömb (vagy hemiszférikus) analizátorok (CHA) jobb felbontást ad az elérhető intenzitás viszont romlik.
  
$P_i(WXY)$ annak a valószínűsége, hogy a gerjesztett atomnak a W-héj ionizációja után Auger-folyamat következik be,
+
Az energia analizátoron másodpercenként <10<sup>6</sup> elektron jut át. Ilyen kis áramok (<10<sup>-13</sup> A) detektálásához elektronsokszorozókat (manapság ugynevezett channeltronokat) alkalmaznak. Ezekkel ~10<sup>7</sup>-szeres erősítést lehet elérni.
  
$\sigma_i(E_W)$ a W-héj ionizációs hatáskeresztmetszete,
+
===Az AES méréseknél használt készülék műszaki adatai===
 +
A laborméréseket a BME Atomfizika Tanszékén található berendezésen végezzük. A Budapesti Műszaki Egyetem Atomfizika Tanszékének Felületfizikai Laboratóriumában egy VG Microtech gyártmányú XPS-SAM komplex felületanalitikai nagyműszer működik, melyben XPS és Auger elektron spektroszkópiai vizsgálatok is végezhetőek.
  
$N(z)$ a z mélységben lévő atomsűrűség,
+
A berendezésben használt elektronágyú VG Microtech gyártmányú, típusa: LEG200. Minimális nyalábátmérő: 200nm, energia tartomány: 0-10keV, maximális áram: $3\mu A$.
  
$X_i(z)$ az i. elem z mélységben lévő koncentrációja (atomtörtben),
+
Az elektron energia analizátor egy CLAM 2 típusú, VG gyártmányú, csonkított hemiszférikus, 180°-os szektoranalizátor. A hozzá kapcsolódó detektor 10<sup>6</sup>-10<sup>8</sup>-szoros erősítésű channeltron.
  
$F(cx)$ az $\alpha$ emissziós szögtől függő felületi érdességi faktor,
+
A minták szekunder elektron képét egy szcintillációs számláló segítségével lehet előállítani. A minta felületéről kilépő elektronok (kinetikus energiájuktól függetlenül) egy a vákuumtérbe merülő olyan bevonattal ellátott felületbe ütköznek, melyben fényfelvillanásokat okoznak. A fényfelvillanásokat fotoelektron-sokszorózóval detektáljuk. Az így keletkező jelet szinkronba hozzuk a primer elektron–forrás pásztázásával. A keletkező kép különböző fényességű területei a minta megfelelő részeiről kilépő elektronok számát jellemzi.
  
$T(E_{WXY})$ az elektron energia spektrométer válaszfüggvénye,
+
A minták felületének in-situ tisztításához az Atomfizika Tanszéken fejlesztett, differenciálisan szívott, elektronütközéses argon ionágyút használunk. A tipikus porlasztó ionáram $1-1,5\mu A$, a porlasztott terület nagysága ionoptika segítségével $1\times 1$-től $5\times 5$mm-ig változtatható.
  
$D(E_{WXY})$ az elektron detektor transzmissziója,
+
Az analitikai kamrában a vákuumot egy VEB HD EGZ 250.8 iongetter- és egy Edwards gyártmányú EXT 250 turbomolekuláris szivattyú biztosítja. Az iongetter szivattyú szívássebessége levegőre 560 l/s, argonra 152 l/s. A turbomolekuláris szivattyú szívássebessége nitrogénre 240 l/sec, nemesgázokra 250 l/sec. A mérési pozíció megfelelő megválasztását a mintatartó manipulátor teszi lehetővé, amely a 3 térbeli irányban (x,y és z mentén) elmozdítható, és a tartószerkezet vákuumtérbe benyúló tengelye körül elforgatható. A beállítás az x,y,z tengelyeken 0,01 mm-, a forgatásnál 1° pontossággal kivitelezhető. A minták in-situ 1000°C-ig fűthetőek. A mintákat egy EXT 250 típusú turbomolekuláris szivattyúval szívott zsilipkamrán keresztül juttatjuk az analitikai kamrába.
  
$\lambda$ az i. elemből kilépő elektron közepes szabad úthossza.
+
A mérés-adatgyűjtés a VGX900 nevű szoftver segítségével automatizált. A detektorok által észlelt jelet megfelelő erősítés után a számítógép regisztrálja. A számítógép lépteti megadott diszkrét értékekkel a spektrométer energia-analizátorát, és lépésenként tárolja a jelintenzitást. A program rendelkezik adatfeldolgozási funkciókkal is.
  
Megjegyezzük, hogy a kémiai környezet hatását beleértettük az egyes paraméterek értékeibe, tehát például a $P_i(WXY)$ vagy $\lambda$ értéke ugyanarra az i. elemre is más érték, attól függően, hogy tiszta anyagból, vagy kémiailag kötött állapotban lévő anyagból származnak az Auger-elektronok. Ha figyelembe vesszük a szögeloszlást is, azaz  széles szögtartományban vizsgáljuk az Auger elektronhozamot, továbbá figyelembe vesszük azt, hogy a paraméterek egy része a gerjesztő primer energiától is függ, akkor a következő alakot nyerjük:
+
==AES spektrumok és kiértékelésük==
{{eq|I_i(WXY) {{=}} \frac{1}{4\pi} \int\limits_{\Omega} \int\limits_0^{\infty} \int\limits_0^{(E_p)}I_p(E,z)\left [ I\neq r_b(E)\right] P_i(WXY) \cdot \sigma_i(E_pE_W) \cdot N(z) \cdot X_i(z) \cdot F(\alpha) \cdot T(E_{WXY}) \cdot D(E_{WXY}) \cdot \exp \left[ \frac{-z}{\lambda_i(E_p) \cdot \cos \alpha}\right] \cdot dE \cdot dz \cdot d\Omega|eq:4|(4)}}
+
A [[#fig:3|3. ábrán]] szén mintán mért szekunder elektron eloszlás látható az energia függvényében. A mérés során a gerjesztő primer elektronok energiája 1000 eV volt. A spektrumon ennél az energiánál jelentkező nagy csúcs a rugalmasan visszaszórt elektronok következménye. A direkt spektrumon (N(E)) jól látható, hogy az Auger csúcsok egy igen nagy háttéren ülnek. Ez az Auger mérések nagy problémája. Ettől a folytonos lassan változó háttértől deriválással szabadulhatunk meg. A [[#fig:3|3. ábrán]] a dN(E)/dE görbén már jól meghatározható helyen jelentkezik a C (KLL) csúcsa és a jel csúcstól csúcsig mért értéke is könnyen mérhető. A gyakorlatban az Auger csúcs nagyságát ezen csúcstól csúcsig mért távolsággal adjuk meg. Manapság az N(E) direkt spektrumból a dN(E)/dE spektrumot számítógéppel numerikus deriválással határozzák meg.
 +
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
| {{fig|Auger_03.png|fig:3|Mért direkt (N(E)) és derivált elektron eloszlás az energia függvényében 3. ábra}}
 +
|}  
  
ahol r<sub>b</sub> a visszaszórási tényező. (A szakirodalomban szokásos az 1+r<sub>b</sub> értéket visszaszórási tényezőnek nevezni)
+
===Kvalitatív analízis===
 +
Igen sok esetben csak arra van szükségünk, hogy eldöntsük egy adott felületen bizonyos kezelések, eljárások után van-e valamilyen elem. Ezekben az esetekben csak az a feladat, hogy elegendően széles energia tartományban nagy érzékenységgel vegyünk fel Auger elektron spektrumokat. A mért csúcsokat azonosítva a rendelkezésre álló enrgia táblázatok segítségével megválaszolható a kérdés, hogy az adott elem kimutathatósági határánál nagyobb koncentrációban milyen elemek vannak a felületen.
  
Általában elmondható, hogy a ([[#eq:4|4]])-ben szereplő tényezők a kísérleti körülményeknek és a mátrix-környezetnek bonyolult függvényei. Az I<sub>p</sub>-t alkotó primer elektronok energiájáról elmondható, hogy az Auger-elektronok szökési mélységén belül a primer energia csökkenése elhanyagolható.
+
A SAM berendezésekkel vizsgálható és megjeleníthető egy adott elem felületi eloszlásképe is, ami különösen korróziós, katalitikus vagy szemcsehatár vizsgálatoknál nagy jelentőségű. Egy másik fontos információ egy adott elem mélységi eloszlásgörbéjének a felvétele, amire az AES berendezés porlasztásos üzemmódja ad lehetőséget. Ez főleg többrétegű szerkezeteknél, szegregációs vagy diffúziós vizsgálatoknál fontos.
  
===A SAM berendezés ismertetése===
+
===Kvantitatív analízis===
A vizsgálandó minta felületének  gerjesztését fókuszált, mozgatható elektron nyalábbal végezzük, míg mintatisztítás, illetve mélységi elemeloszlás felvétel céljára ionnyalábbal való bombázásra is lehetőség van, amint  ez a SAM berendezés elvi felépítését bemutató  3. ábrán látható. A készülék konkrét  kezelésének bemutatatására a mérési feladatokat  ismertető részben, a 7. ábra alapján kerül sor.
+
Egy AES mérésből nyerhető közvetlen információ a detektált elemek Auger elektron árama. Az i. elem WXY Auger átmeneténél ez az Auger elektronáram (vagy intenzitás) a következő egyszerűsített alakban adható meg:
 +
$$I_i(WXZ) {{=}} I_p \cdot P_i(WXY) \cdot \sigma_i(E_p,E_W) \cdot \lambda_i(E_A) \cdot R(E_p) \cdot T(E_A) \cdot N \cdot X_i$$
 +
ahol $I_p$ a primer elektronáram erőssége és $E_p$ a primer elektronok energiája, $E_W$ és $E_A$ a W atomi nívó ionizációs energiája illetve az Auger energia (az adott Auger átmenetből származó elektronok kinetikus energiája). $P_i(WXY)$ annak a valószínűsége, hogy a gerjesztett atomnak a W-héj ionizációja után WXY típusú Auger-folyamata következik be, $\sigma_i(E_W)$ a W-héj ionizációs hatáskeresztmetszete, $\lambda_i(E_A)$ az i. elemből kilépő elektron közepes szabad úthossza, $R(E_p)$ az elektron visszaszórási tényező, $T(E_A)$ a berendezés transzmissziós együtthatója, $N$ az analizált anyagban lévő atomsűrűség és  $X_i$ az i. elem koncentrációja (atomtörtben).
  
Az elektronágyú tartalmazza a volfrámszálas elektronforrást, a gyorsító, a fókuszáló és az eltérítő elektródákat. Az elektronágyú-szabályozó egység gondoskodik a fókuszáláshoz és gyorsításhoz szükséges feszültségekről és a katód fűtéséről. A pásztázást-szabályozó egység biztosítja a fókuszált elektron-nyaláb eltérítését, valamint a TV, illetve display egységnek az eltérítéssel szinkronizált- feszültséggel való ellátását.
+
Megjegyezzük, hogy a kémiai környezet hatását beleértettük az egyes paraméterek értékeibe. Általában elmondható, hogy a fenti összefüggésben szereplő tényezők a kísérleti körülményeknek és a mátrix-környezetnek bonyolult függvényei, és a mennyiségek utáni zárójelekben csak a legfontosabb paraméterek szerepelnek azok közül, amelyektől ezek a mennyiségek függenek.
  
A mintából emittált Auger-elektronok energia szerinti szétválasztását az elektronágyú köré elhelyezett CMA (hengeres tükör analizátor) típusú energiaanalizátor végzi. Az ilyen fajta energiaanalizátor a vizsgálni kívánt E energia $\Delta E$ környezetébe eső energiájú elektronokat engedi át. A $\Delta E/E$ mennyiség az analizátor energia-felbontása, ami az alkalmazott konkrét berendezésnél állítható, és 0,3%, 0,6% valamint 1,2%  lehet. Az energiaanalizátor-szabályozó egység által szolgáltatott feszültség egy konkrét értékénél csak adott energiájú elektronok képesek a hengeres analizátor terét a szaggatott vonallal jelöIt pályán befutni.
+
A mérésekből nyerhető egyik legfontosabb információ az X<sub>i</sub> elemkoncentráció. Ennek megállapítására az ad lehetőséget, hogy a (differenciális) energiaspektrum Auger-csúcsainak csúcstól-csúcsig mért nagysága jó közelítéssel arányos az Auger elektronok intenzitásával, ezzel viszont arányos az illető elem koncentrációja. A fenti összefüggésben célszerű bevezetni s<sub>i</sub> érzékenységi faktornak nevezett mennyiséget, ekkor:
 +
{{eq|I_i(WXY) {{=}} I_p \cdot s_i \cdot N \cdot X_i|eq:1|(1)}}
 +
Mint láttuk s<sub>i</sub> nagyon sok, néha csak nagy bizonytalansággal számolható, mennyiségtől függ. Azonban néhány megszorító feltételezés bevezetésével bizonyos mintatípusoknál a mennyiségi meghatározás módja leegyszerűsíthető. Így eltekintünk a felületi érdrsség befolyásoló szerepétől. (Az ebből származó hibát polírozott, vagy sík szemcsehatár felületek előállításával, illetőleg forgatható mintatartó alkalmazásával lehet csökkenteni.) Továbbá figyelembe vesszük, hogy a nem kifejezetten kémiai vegyületeknél a mátrix környezet elsősorban az elemek legkülső elektronhéjainak energiaviszonyait befolyásolja, és a mélynívókra gyakorolt hatása sokkal kisebb jelentőségű. (Így a kiértékelésnél csak azokat az energia csúcsokat használjuk fel, amelyeknek kialakításában a mélynívók vesznek részt.). Az s<sub>i</sub> mátrix függése még tovább csökkenthető, ha relatív érzékenységi tényezőkkel (RSF) dolgozunk, azaz egy önkényesen megválasztott anyag (általában ezüst) érzékenységi faktorához viszonyítjuk (S<sub>i</sub>=s<sub>i</sub>/s<sub>Ag</sub>). Egy adott berendezés típusra valamennyi tiszta anyag relatív érzékenységi tényezője kimérhető és a fent ismertetett feltételek teljesülése  esetén  jó közelítéssel használható  ismeretlen  összetételű anyagokra is. [[#eq:1|(1)]] összefüggésből az adott elem koncentrációja (atomtörtben) kifejezve:
 +
$$X_i {{=}} \frac{I_i(WXY)/s_i}{\sum_{k} I_k(WXY)/s_k}$$
 +
ahol a k szerinti összegzés a minta összes detektálható elemére terjed ki. Végigosztva a számlálót is és a nevezőt is s<sub>Ag</sub>-vel:
 +
$$X_i {{=}} \frac{I_i(WXY)/S_i}{\sum_{k} I_k(WXY)/S_k}$$
 +
Ez az összefüggés 10-15 % pontossággal alkalmazható nem kémiai vegyületek összetételének meghatározására. A módszer érzékenysége 1-5 at %, ami egyéb kémiai analízissel összehasonlítva igen szerénynek tűnhet. Azonban vegyük figyelembe, hogy az a térfogat amiből az információ származik néhány tized nm vastag réteg, közepesen jól fókuszált primer elektronnyaláb (átmérő: $\sim 1\mu$ esetében, ~10<sup>-8</sup> cm<sup>2</sup> területű tartományából. Az atomi sűrűséget 10<sup>23</sup> atom/cm<sup>3</sup>-nek véve 1% érzékenységgel számolva ez néhányszor 10<sup>4</sup> atom kimutatását jelenti.
  
A feszültség változtatásával tehát az elektronok  energia spektruma  vehető fel. Az energiájuk szerint megszűrt elektronok az elektronsokszorozóba kerülnek, majd jelerősítés után az Auger-spektroszkóp elektronikája dolgozza fel a továbbított elektromos jeleket differenciális üzemmódban. Az így előállított differenciális energiaspektrum írószerkezettel, vagy egyéb display egységgel jeleníthető meg.
+
===Kötésállapot kimutatása===
 +
Az Auger mérésekből nyerhető másik fontos információ a kémiai kötésviszonyokra levonható következtetés. Erre az ad lehetőséget, hogy a különböző kémiai környezet különböző mértékű változásokat hozhat létre az Auger-elektronenergia csúcsok helyében és alakjában. Ez az eltolódás különösen szignifikáns a kis energiájú Auger-elektronenergia csúcsoknál, amelyekhez tartozó átmenetekben a vegyértéksáv is részt vesz.
 +
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
| {{fig|Auger_04.png|fig:4|Különböző kémiai kötésből származó C KLL derivált Auger elektron csúcs. SiC-on és grafiton mérve ion porlasztás előtt és után (a), különböző fémkarbidok összehasonlítása (b). 4. ábra}}
 +
|}
  
A SAM berendezés a vizsgált minta felületének alapvetően ''kétfajta'' képét tudja előállítani. Az első fajta képpé a vizsgálatok elején a felületnek  a vizsgálatok szempontjából érdekesebb részeiről való előzetes tájékozódás céljából felvehető az un. mikrográf vagy  mikrodiagram, amely egy elektronmikroszkópos képre hasonlít, és a felület optikai képét adja. Ezt a képet vagy a szekunder elektronáramnak, vagy az elnyelt target-áramnak pontról-pontra történő regisztrálásával és megjelenítésével kaphatjuk meg. Az első esetben a képet röviden szekunder elektron-képnek, a második esetben abszorbeált áram-képnek  nevezzük.
+
==Mérési feladatok==
 +
A mérendő minták bezsilipelése az analitikai kamrába a gyakorlat megkezdése előtt már megtörténik. Az ionporlasztásos mérésekhez szükség van a turbomolekuláris szivattyú működtetésére, mivel a nemesgázokat az iongetter szivattyú nem jól szívja. Ezt a szivattyút  szintén elindítjuk a gyakorlat megkezdése előtt.
  
A másik fajta képet, amely egy adott elem felületi eloszlását mutatja, Auger eloszlás-képnek nevezik. Ez úgy készül, hogy a kérdéses elem adott energiájú elektronjaitól származó "Auger"-jeleket folyamatosan regisztráljuk, miközben a minta felületét folyamatosan pásztázzuk a primer elektronnyalábbal.
+
Mielőtt megkezdjük a méréseket meg kell győződni róla, hogy elegendően jó vákuum van a kamrában (<10<sup>-8</sup> mbar). Megmérjük az ionizációs vákuummérővel. A mintát mérőpozicióba helyezzük. (A mérésvezető megadja az aktuális x, y, z valamint szög értékeket.)
  
Lehetőség van az elemek mélység szerinti eloszlásának nyomon követésére is, mégpedig oly módon, hogy a primer ionágyúval előállított  ionokkal bombázzuk a minta (target) felületét, amelyről folyamatosan porlódnak le az atomrétegek. Eközben a kiválasztott elemek Auger elektron intenzitásának folyamatos kijelzésével felvehető ezen elemek mélységi eloszlásgörbéje.
+
Bekapcsoljuk a számítógépet, elindítjuk az adatgyűjtő programot (XPS). A Set  menüpontban betöltjük a SIO2AES.REG régió adatokat.  
 
+
A SAM berendezés néhány fontosabb mérési paramétere a következő:
+
* primer elektron energia:5 keV, de egyébként 0,5-10 keV között változtatható,
+
* primer elektron áramerősség: általában néhány tized $\mu A$, de egyébként 2 $\mu A$-ig változtatható,
+
* primer elektron nyaláb átmérő: kb. $5 \mu m/10 keV$ és 10-7A értéknél), és kb. $10 \mu m$ 15 keV és 10<sup>-6</sup> A értéknél),
+
* laterális felbontóképesség: kb. 5 $\mu m$, közel azonos a primer elektron nyaláb legkisebb átmérőjével,
+
* energiafelbontóképesség: 0,3%, 0,6%, 1,2% /állítható/,
+
* porlasztó ionenergia: 5 keV-ig változtatható,
+
* porlasztó ionáram: 10<sup>-9</sup> -10<sup>-6</sup> A között állítható,
+
* egyszerre behelyezhető minták száma: max.12 db,
+
* kifűthetőség: 250 °C-ig,
+
* sztatikus végvákuum: kb. $3\cdot 10^{-8} Pa$.
+
==Mérési feladatok==
+
===Ötvözet-minta összetételének meghatárzása===
+
A méréshez szükséges eszközök:
+
* acél-etalon minta (a mérés kezdetén már a vákuumkamra mintatartójára helyezve),
+
* SAM berendezés,
+
* Vákuummérő,
+
* Dewar-palack cseppfolyós nitrogénnel töltve.
+
  
Az előzőekben már láttuk, hogy az Auger-elektronok intenzitását számos mátrixfüggő és berendezésfüggő paraméter befolyásolhatja. Ezek közül sok paraméternek a hatásától eltekinthetünk, ha néhány egyszerűsítő körülménnyel és feltételezéssel élünk. Az első az, hogy az információs mélységen belül eltekintünk ugyanazon elem koncentrációbeli inhomogenitásaitól, tehát megelégszünk azzal, hogy a legfelső atomrétegek átlagos összetételét határozzuk meg. Ugyanakkor laterális vonatkozásban, a primer gerjesztő nyaláb keresztmetszetének megfelelő területen belül szintén eltekintünk a minta alkotóinak koncentrációbeli inhomogenitásaitól, tehát e tekintetben is csak átlagértéket határozunk meg. A következő egyszerűsítés az, hogy eltekintünk a felületi érdességi faktor szerepétől. Ezt azért vagyunk kénytelenek megtenni, mert a mérés (és a porlasztás) alatt egyszerűen nincs idő a minta egyedi felületi geometriai sajátságainak pontos feltérképezésére. Az ebből származó hibát úgy csökkentjük, hogy simára polírozott felületeket, vagy a gerjesztő elektronnyaláb alatt síknak tekinthető szemcsehatárokat vizsgálunk.
+
Bekapcsoljuk az „ENERGY DISPLAY” és a „LENS POWERSUPPLY” elektromos egységek főkapcsolóját. (Ezek segítségével tudjuk leolvasni az energia analizátoron átjutó elektronok aktuális energiáját.) Bekapcsoljuk a „SPECTROMETER CONTROL UNIT” egységet a POWER feliratú gombbal (ld.: [[#fig:5a|5a. ábra]]). Ezzel az egységgel tudjuk beállítani manuálisan az energia analizátor által átengedett elektron energia értékeket (ld.: 6 jelű beállítok). Ha az 1 jelű kapcsolót MgK.E. állásba és a 2 jelűt E állásba tesszük, az „ENERGY DISPLAY” a szekunder elektronok mozgási energiáját mutatja. AES méréseknél a 4 kapcsoló CRR (konstans retardációs energia) állásban legyen. A 3 jelű kapcsoló COMP állásban a számítógépnek adja át a vezérlést, kézi beállításokhoz az 50-es állásba helyezzük. Az 5 kapcsolónak SRART állásban kell lennie. Bekapcsoljuk az [[#fig:5b|5b. ábrán]] látható egységet, amely az energia analizátoron átjutó elektronok áramát méri. A channeltronra adott feszültségek be optimális értékre be vannak állítva, ehhez ne nyúljunk. Az 1 kapcsolót lefele kapcsolva rákerül a channeltronra a feszültség. A műszer alatt található 2 jelű kapcsolóval állítható a detektálás érzékenysége.
  
További egyszerűsítésre nyílik lehetőség, ha meggondoljuk, hogy a mátrixkörnyezet elsősorban az elemek legkülső elektronhéjainak energiaviszonyait befolyásolja, és a mélynívókra gyakorolt hatása sokkal kisebb jelentőségű, esetenként elhanyagolható. Így, ha a mennyiségi kiértékelésnél azokat az Auger elektronenergia csúcsokat használjuk fel, amelyeknek a kialakításában a mélynívók vesznek részi, akkor (hacsak nem kémiai vegyületet vizsgálunk) egy hasonló összetételű etalonmintával, vagy csak a vizsgált elemeket tartalmazó tiszta anyaggal történő összehasonlításnál az Auger-folyamat-keltés valószínűségében és az ionizációs hatáskeresztmetszetben fellépő változások elhanyagolhatóak.
+
Az elektron ágyú tápegysége az [[#fig:5e|5e. ábrán]] látható, a primer elektronok irányítását és pásztázását az [[#fig:5c|5c. ábrán]] bemutatott IMAGING UNIT egység végzi. A mintán átfolyó áramot mérő műszer az [[#fig:5d|5d. ábrán]] látható. Ez az egység biztosítja a szcintillációs számlálóra adott feszültséget is. Ezeket az egységeket is bekapcsoljuk az 1 jelű kapcsolókkal. A visszaszórt szekunder elektron áram kép megjelenítéséhez a TV Capture Card programmal végezzük.
Továbbá, ha a vizsgált minta-ötvözet a periódusos rendszerben közeli rendszámú fémes elemekből áll, amelyeknél az elektron közepes szabad úthossz és a visszaszórási tényező értékek közel azonosak, akkor a mennyiségi kiértékelésre néhány százalékos relatív hibával alkalmas az un. relatív érzékenységi tényezők módszere. Ennél a módszernél a minták összetételének meghatározására felhasználjuk az ugyanazon típusú berendezésen egy ezüst-etalon mintára normált érzékenységi faktorokat a különböző elemek esetén (S<sub>X</sub>). Ezek az értékek : 3 keV, 5 keV és 10 keV primer elektronenergiákra a 4., 5. és 6, ábrákról olvashatók le.
+
  
Ezután a vizsgált minta x. komponensének koncentrációját a következő összefüggéssel számolhatjuk atomszázalékban:
+
Az elektronágyú tápegységén lévő műszer alatt lévő kapcsolóval választható, hogy a Filament I –t (katód fűtő árama), HV-t (primer elektronok gyorsító feszültség) vagy a Beam I  (nyaláb áram) beállított (Ref) illetve tényleges (Actual) értékét méri. A fenti értékeket a megfelelő 3, 4 és 5 potenciométerekkel állíthatjuk. A katód lassú felfűtésével kezdjük a beállításokat, bekapcsoljuk a 6 jelű kapcsolót és lassan (hogy gáztalanodjon a katód) növeljük a fűtőáramot a 3-as gombbal (maximum 2,4 A-ig). Beállítjuk a Beam I Ref értékét $200-300 \mu A$-re (5 gomb). Bekapcsoljuk a 7 kapcsolót és a 4-es gomb segítségével lassan növeljük a gyorsító feszültséget 2-3 kV értékig. Közben figyeljük a targeten átfolyó áram értékét ([[#fig:5d|5d. ábrán]] 2-es kapcsoló off álásban, 3-es kapcsoló nA vagy μA méréshatárban). Ellenőrizzük, hogy a Beam I Actual értéke megegyezik-e a Ref értékkel. A 3 jelzésű potenciométer finom állításával maximalizáljuk a mintán átfolyó áramot. Az IMAGING UNIT –on az 5 kapcsoló AUGER állásban, a 6 INT állásban legyen. Tegyük a 2 kapcsolót (a kereszt irányú pásztázó feszültség amplitúdóját szabályozza) 1 állásba. Az [[#fig:5d|5d ábrán]] látható egység 3 kapcsolóját tegyük PM VOLTS állásba, a 2 kapcsolót ON-ba és 4 poenciotméter segítségével fokozatosan adjuk rá a fotoelektronsokszorozóra a feszültséget (700-800 fölé ne menjünk). Ekkor megjelenik a monitoron a minta visszaszórt elektron képe. A kép élességét az elektronágyú tápegységén (ld.: [[#fig:5e|5e. ábra]]) található 8 jelű gombok (FOCUS) segítségével tudjuk állítani. A kép minőségét az IMAGING UNIT ([[#fig:5c|5c. ábra]]) 4 potenciométereivel illetve a fotoelektronsokszorozóra ([[#fig:5d|5d. ábra]] 4) adott feszültség szabályzásával tudjuk javítani.
{{eq|{{C_x {{=}} \frac{I_x}{L_x \cdot E_{mx} \cdot I_{px} \cdot S_x} \bigg / \sum_{i=1}^n \frac {I_x}{L_x \cdot E_{mx} \cdot I_{px} \cdot S_x}} \cdot 100 }|eq:5|(5)}}
+
ahol
+
*I<sub>i</sub> az i. komponens csúcstól-csúcsig mért Auger-elektron intenzitása
+
*S<sub>i</sub> az i. elem relatív érzékenységi tényezője
+
*E<sub>mi</sub> az i. elemnél alkalmazott modulációs energia
+
*L<sub>i</sub> az i. elemnél alkalmazott erősítési tényező
+
*I<sub>pi</sub> az i. elemnél alkalmazott primer elektron áram
+
n a minta komponenseinek száma
+
  
Ha a mérések folyamán a SAM berendezés erősítési tényezőjét, modulációs energiáját és a primer elektron áramot nem változtatjuk (és a jelen esetben így fogunk eljárni), akkor ([[#eq:5|5]]) a következő egyszerűbb alakot ölti:
+
Ionporlasztás megkezdése előtt megnyitjuk az analitikai kamrához csatlakozó turbomolekuláris szivattyú és a kamra közötti szelepet és elzárjuk a kamra és az iongetter szivattyú közötti szelepet. Az ionágyúhoz csatlakozó finom-gázbeeresztő szelepen keresztül Ar gázt engedünk a kamrába kb. $50\cdot10^{-7}$ mbar nyomásig. Bekapcsoljuk az ionágyú tápegységének (ld.: [[#fig:5f|5f. ábra]]) főkapcsolóját (1). Felkapcsoljuk a A HV (2) kapcsolót és a 3 potenciométer segítségével növeljük az emissziós áramot. A targetáram mérő műszeren ([[#fig:5d|5d. ábra]]) kb. 1 $\mu A$ targetáramot állítunk be.
{{eq|{{C_x {{=}} \frac{I_x}{S_x} \Big / \sum_{I=1}^n\frac{I_x}{S_x} \cdot 100}}|eq:6|(6)}}
+
{|  cellpadding="5" cellspacing="0" align="center"
Ezek után az elvégzendő feladat egy ismeretlen összetételű acélminta komponenseinek kvalitatív, majd mennyiségi meghatározása. A mintának a mintatartóba történő behelyezése után, és a vákuumszivattyúk elindítását követően legalább egy nappal később kerüljön sor a mérésre a megfelelő nagyvákuum biztosítása céljából. A mintabetétel és a vákuumszivattyúk bekapcsolása a mérés kezdetére megtörtént. Közvetlenül a mérések megkezdése előtt a vákuumrendszer falába történő cseppfolyós levegő beengedésével javítsuk tovább a nagyvákuum értéket 10<sup>-7</sup>-10<sup>-8</sup> Pa nyomás eléréséig. A vákuumszivattyúkat szabályozó egység a 7. ábrán látható 12. fiókban nyert elhelyezést.
+
|-
 +
| {{fig|Auger_05a.png|fig:5a|5.a ábra.}}
 +
| {{fig|Auger_05b.png|fig:5b|5.b ábra.}}
 +
| {{fig|Auger_05c.png|fig:5c|5.c ábra.}}
 +
|-
 +
| {{fig|Auger_05d.png|fig:5d|5.d ábra.}}
 +
| {{fig|Auger_05e.png|fig:5e|5.e ábra.}}
 +
| {{fig|Auger_05f.png|fig:5f|5.f ábra.}}
 +
|}
  
Magát a mérést azzal kezdjük, hogy a mintát geometriailag optimális pozícióba hozzuk a 2000 eV-os rugalmasan szórt energiacsúcs mérésével. Ezt a mérés kezdetén a felügyelő tanár segítségével végezzük el. Ezután a 7. ábrán látható SAM berendezés 8., 10. és 11. fiókjának és a készülék TV¬monitorának képernyőjén az abszorbeált áramképek segítségével kiválasztjuk a vizsgálatokra legalkalmasabb homogén felületrészt, ami kiválásokat, inhomogenitásokat nem tartalmaz. A mérési hely pontos beállítását a SAM berendezésen a 8. fiókon a kép-pozícionáló egység X-Y jelzésű potenciométereivel végezhetjük.
+
===Acél minta összetételének meghatározása===
 +
Cél: A minta felületének és ionporlasztással végzett tisztítás utáni összetételének meghatározása.
  
Ezután a 7. jelű ionágyú-szabályozó egység alkalmazásával ionporlasztással megtisztítjuk a mintafelületet. Az ionporlasztást addig alkalmazzuk, amíg a mintafelületről származó szén- és oxigén-csúcsok eltűnnek, vagy minimális értéken stabilizálódnak. Az ion- és elektronáramot a 9. fiók digitális kijelzőjén olvashatjuk le.
+
Polírozott acél minta felületéről Auger elektron spektrumokat veszünk fel, majd ezt megismételjük $1 \mu A$ áramerősséggel végzett 30 perc ionporlasztás után. Előzetesen meggondoljuk a beállítandó energiatartományt, tartózkodási időt, adatgyűjtés lépésközét. A kiértékelés során a spektrumokat simítjuk, deriváljuk, azonosítjuk a detektált Auger elektron csúcsokat (ld.: [[#fig:2|2. ábra]]), leolvassuk az intenzitásokat, majd koncentrációkat számolunk. A számolásnál használjuk a {{cite|2}} hivatkozásban megadott  érzékenységi faktor értékeket (a könyv a mérőberendezéshez készítve)! Összehasonlítjuk a felületről és az ionporlasztás után felvett spektrumokból nyert eredményeket.
  
Ezt követően kerül sor a minta Auger-elektronenergia spektrumának felvételére, célszerűen 5 keV-es primer elektronnyaláb alkalmazásával. A primer energiát a 11. fiók BEAM VOLTAGE feliratú potenciométerével állítjuk be. Az erősítési tényező és elektronsokszorozó nagyfeszültség értékeket úgy állítjuk be, hogy az Auger-energiacsúcsok legnagyobbika függőleges irányban közel kitöltse az írószerkezetre helyezett spektrumpapírt.
+
===Kémiai kötésállapot vizsgálata===
 +
Cél: A Si különböző kötésállapotainak tanulmányozása.
  
A primer elektronáram értékét $0,5-1 \muA$ között állítsuk be. Az erősítési tényezőt az 5. fiókon, az elektronsokszorozó nagyfeszültséget a 6. fiókon állítjuk be. A primer elektronáramot a 10. fiók EMISSION és CONDENSER LENS feliratú potenciométereivel állítjuk be, és a 9. fiók digitális kijelzőjén olvassuk le.
+
Vizsgálandó minta: Félvezető eszközök gyártásánál használt polírozott Si szeletből kivágott 1x1 cm-es darab, amire termikus oxidációval 50 nm vastag SiO2 réteget növesztettek.
  
A spektrumfelvételt a 4. fiók START feliratú gombjának benyomásával indítjuk, mellyel egyidőben a 2. fiók írószerkezetén a tollat ráhelyezzük a spektrumpapírra. A folyamatosan, kb. 5 perc alatt kiíródó spektrum megjelenik az 1. fiók oszcilloszkópján is. A 3. fiókot, ami mélységi profilgörbe felvételét teszi lehetővé, ennél a mérésnél nem használjuk. Az aktuális Auger-elektronenergia értékeket a 4. fiók digitális kijelzőjén olvashatjuk le. A spektrumot elég a 0-1000 eV-os energiaintervallumban felvenni.
+
Meggondoljuk, hogy milyen energiáknál várhatóak Auger elektron csúcsok, továbbá, hogy mely csúcsok lehetnek érzékenyek a kémiai kötésállapotra. Ennek alapján eldöntjük, hogy milyen energiatartományt, tartózkodási időt, adatgyűjtési lépésközt állítsunk be spektrumfelvételekhez. Felvesszük a spektrumokat, majd 10 percet $1\mu A$-rel porlasztjuk a felületet. Felvesszük a visszaszórt elektron képet. Ennek alapján AES spektrumot veszünk fel a porlasztott kráter közepéről és oldaláról. Összehasonlítjuk a derivált spektrumok alakját, értelmezzük.
  
A spektrum felvétele után először a 2. ábrán látható Auger-elektronenergia táblázat felhasználásával azonosítjuk a mintát alkotó elemeket. Az azonosításnál célszerű annak figyelembevétele, hagy a fémek többségének több, karakterisztikus energiájú Auger-energiacsúcsa is van. A beazonosított elemek vegyjelét ceruzával írjuk rá a spektrumon lévő és az adott elemet reprezentáló csúcsra.
+
==Javasolt irodalom==
 +
{{ref|1|O. Brümmer, J, Heydenreich, K.H. Krebs, H.G. Schneider: Szilárd testek vizsgálata elektronokkal, ionokkal és röntgensugárzással. ''Műszaki Könyvkiadó'', Budapest, 1984.}}
 +
{{ref|2|L.E. Davis, N.C.MacDonald, P.W.Palmberg, G.E.Riach, R.E.Webwr: Handbook of Auger Electron Spectroscopy. ''Physical Electronics Industries'', Minnesota, 1976.}}
 +
{{ref|3|D. Briggs, M.P. Seah: Practical Surface Analysis, Vol 1.: Auger and X-ray Photoelectron Spectroscopy, ''John Wiley & Sons'', New York, 1992.}}
  
A mérési feladat második részében először olvassuk le mm-ben a beazonosított fém-komponensek fő Auger-csúcsainak csúcstól-csúcsig mért intenzitását. Ennek ismeretében, továbbá az 5. ábra és a ([[#eq:6|6]]) összefüggés segítségével határozzuk meg mennyiségileg is a minta összetételét. A mennyiségi meghatározás eredményét táblázatosan foglaljuk össze.
+
==PDF formátum==
 +
*[[Media:Auger_spektroszkopiaL.pdf|Szilárdtestfelületek analízise Auger elektronspektroszkópiával]]
  
===Kémiai eltolódás (chemical shift) vizsgálata===
+
</wlatex>
 +
<!--Utolso szerkesztes:2013.09.25-->

A lap jelenlegi, 2013. szeptember 27., 10:40-kori változata


Tartalomjegyzék


Elméleti összefoglaló

Az AES módszer elve

Pierre Auger francia fizikus röntgensugárzással gerjesztett argon atomok gerjesztési folyamatainak Wilson-féle ködkamrában történő tanulmányozása folyamán fedezte fel a róla elnevezett effektust 1925-ben. Ezt követően csak kb. 40 év után kezdődött el az AES (Auger elektron spektroszkópia) módszer széleskörű gyakorlati felhasználása. Napjainkban az AES módszert elsősorban szilárdtest felületek vizsgálatára alkalmazzák. Ennek folyamán a vizsgálandó felületet valamilyen primer gerjesztés hatásának tesszük ki, ami elsősorban 1-10 keV-os elektronnyalábbal való bombázást jelent, de elektromágneses sugárzás vagy ionnyaláb is lehet a gerjesztő hatás. Az ekkor keletkező un. Auger elektronok energiáinak mérésével lehet a minta összetételét meghatározni.

A vizsgálandó anyagban a primer gerjesztés hatására végbemenő Auger-folyamatot az 1. ábrán szemléltetjük, és az alábbiak szerint értelmezzük.

Az elektron gerjesztés Auger-folyamat elvi sémája 1. ábra

Egy belső, például a K-héjon lévő elektront a primer részecske eltávolít az atomi kötelékből. Az így szabaddá váló energianívóra egy magasabb, például az L1 nívóról lép be egy elektron. A felszabaduló energiát például az L2 nívón lévő elektron veszi át, ami egy jól meghatározott, karakterisztikus energiával kilép a felületből. Ezt az elektront nevezzük KL1L2, vagy általánosabban KLL Auger-elektronnak. Itt jegyezzük meg, hogy a gyakorlat számára legfontosabb, nagy elektronhozammal rendelkező Auger-elektronok esetén az Auger-folyamatban résztvevő második és harmadik elektronhéj egybeesik, így az anyagok zöménél a KLL, LMM vagy MNN Auger-elektronok a leggyakoriabbak.

A továbbiakban határozzuk meg, az atomból emittálódó Auger-elektron energiáját nullad rendű közelítésben. Legyenek EK, EL1 és EL2 a megfelelő héjakhoz tartozó ionizációs energiák. Amikor az L1 héjon lévő elektron betölti a K héjon lévő üres helyet \setbox0\hbox{$E_K - E_{L1}^*$}% \message{//depth:\the\dp0//}% \box0% energia szabadul. (A csillag felső index azt jelzi, hogy az adott atomi nivó egy gerjesztett atom energia nívója.) Igy az L2 nivóról távozó Auger elektron mozgási energiája:

\[E_{KLL} {{=}} E_K-E_{L1}^* - E_{L2}^*\]

Nullad rendű közelítésben az egyes ionizációs energiákat az adott atomi nívók energiáival azonosíthatjuk. Azonban ez nem veszi figyelembe, hogy az Auger folyamatban egyszeresen és kétszeresen ionizált állapotú atomok szerepelnek, továbbá azt sem hogy az elektronok szilárd testetből származnak. Mindezeket figyelembe vevő számítások bonyolultak, viszont kisérletileg jól kimérhetőek az egyes elemekre jellemző Auger átmenetek energiái. Ezekről ad áttekintést a 2. ábra.

A legfontosabb Auger elektron energiák 2. ábra

Megjegyezzük még, hogy ha az Auger-átmenetben a valencia-sáv is részt vesz, akkor az Auger elektron energiák, illetve ezek eltolódásainak mérésével következtetéseket lehet levonni a mintát alkotó atomok kötésviszonyairól is.

AES berendezések felépítése

Az AES mérések ultravákuum körülményeket igényelnek. Erről a felületanalitikai mérési módszerek általános bevezetőjében beszeltünk. Az AES berendezések két fő egysége a primer elektron forrás és az energia analizátor a detektorral.

Primer elektron forrás

Auger elektronokat többféle módon is ki lehet váltani, például röntgen sugárzással, elektron vagy ionbombázással. Gyakorlatban azonban az elektronbombázásos gerjesztés terjedt el. Ennek fő előnye, hogy viszonylag könnyű és olcsó létrehozni megfelelő energiájú és intenzitású elektronokat. Az elektronsugár elektrosztatikusan jól fókuszálható és mozgatható. Jól fókuszált elektronnyaláb esetén a minta szekunder elektron képét is elő lehet állítani, ami lehetővé teszi a minta tetszőleges pontjának kémiai analízisét. Hasonló módon így arra is van mód, hogy elemeloszlás térképet is vegyünk fel. Az ilyen berendezések szokásos elnevezése SAM (Scanning Auger Microprobe). Az Auger berendezésekben használt ionágyúk általában 0-10 keV energiájú elektronok előállítására alkalmasak. Általában 3-5 keV energiájú elektronokkal lehet a legnagyobb intenzitású Auger áramot gerjeszteni, de a jobb fókuszálhatóság érdekében sokszor nagyobb energiákat is használnak. A gerjesztő nyaláb intenzitása a megfelelő érzékenység elérése érdekében 10-6-10-9 A kell legyen.

Energia analizátor

Az elektronok energia szerinti analízisét elektrosztatikus eltérítésű analizátorokkal lehet elvégezni. Az analizátorban az elektromos tér az elektronokat mozgási energiájuk függvényében más és más pályára kényszeríti, és ez teszi lehetővé szeparációjukat. Az energiafelbontást (tehát azt, hogy milyen energiakülönbségű elektronokat tudunk egymástól elkülöníteni) az analizátor típusa és műszaki paraméterei (pl. mérete) határozzák meg.

Gyakran használják a CMA (hengeres tükör) analizátorokat, melyekben az elektronok szétválasztása két koaxiális henger közötti logaritmikus elektromos térben zajlik. CMA-val jó intenzitású, de gyengébb felbontású spektrumok vehetők fel. A CMA-nál a minta elhelyezésére szigorú geometriai megszorítások vonatkoznak.

A koncentrikus félgömb (vagy hemiszférikus) analizátorok (CHA) jobb felbontást ad az elérhető intenzitás viszont romlik.

Az energia analizátoron másodpercenként <106 elektron jut át. Ilyen kis áramok (<10-13 A) detektálásához elektronsokszorozókat (manapság ugynevezett channeltronokat) alkalmaznak. Ezekkel ~107-szeres erősítést lehet elérni.

Az AES méréseknél használt készülék műszaki adatai

A laborméréseket a BME Atomfizika Tanszékén található berendezésen végezzük. A Budapesti Műszaki Egyetem Atomfizika Tanszékének Felületfizikai Laboratóriumában egy VG Microtech gyártmányú XPS-SAM komplex felületanalitikai nagyműszer működik, melyben XPS és Auger elektron spektroszkópiai vizsgálatok is végezhetőek.

A berendezésben használt elektronágyú VG Microtech gyártmányú, típusa: LEG200. Minimális nyalábátmérő: 200nm, energia tartomány: 0-10keV, maximális áram: \setbox0\hbox{$3\mu A$}% \message{//depth:\the\dp0//}% \box0%.

Az elektron energia analizátor egy CLAM 2 típusú, VG gyártmányú, csonkított hemiszférikus, 180°-os szektoranalizátor. A hozzá kapcsolódó detektor 106-108-szoros erősítésű channeltron.

A minták szekunder elektron képét egy szcintillációs számláló segítségével lehet előállítani. A minta felületéről kilépő elektronok (kinetikus energiájuktól függetlenül) egy a vákuumtérbe merülő olyan bevonattal ellátott felületbe ütköznek, melyben fényfelvillanásokat okoznak. A fényfelvillanásokat fotoelektron-sokszorózóval detektáljuk. Az így keletkező jelet szinkronba hozzuk a primer elektron–forrás pásztázásával. A keletkező kép különböző fényességű területei a minta megfelelő részeiről kilépő elektronok számát jellemzi.

A minták felületének in-situ tisztításához az Atomfizika Tanszéken fejlesztett, differenciálisan szívott, elektronütközéses argon ionágyút használunk. A tipikus porlasztó ionáram \setbox0\hbox{$1-1,5\mu A$}% \message{//depth:\the\dp0//}% \box0%, a porlasztott terület nagysága ionoptika segítségével \setbox0\hbox{$1\times 1$}% \message{//depth:\the\dp0//}% \box0%-től \setbox0\hbox{$5\times 5$}% \message{//depth:\the\dp0//}% \box0%mm-ig változtatható.

Az analitikai kamrában a vákuumot egy VEB HD EGZ 250.8 iongetter- és egy Edwards gyártmányú EXT 250 turbomolekuláris szivattyú biztosítja. Az iongetter szivattyú szívássebessége levegőre 560 l/s, argonra 152 l/s. A turbomolekuláris szivattyú szívássebessége nitrogénre 240 l/sec, nemesgázokra 250 l/sec. A mérési pozíció megfelelő megválasztását a mintatartó manipulátor teszi lehetővé, amely a 3 térbeli irányban (x,y és z mentén) elmozdítható, és a tartószerkezet vákuumtérbe benyúló tengelye körül elforgatható. A beállítás az x,y,z tengelyeken 0,01 mm-, a forgatásnál 1° pontossággal kivitelezhető. A minták in-situ 1000°C-ig fűthetőek. A mintákat egy EXT 250 típusú turbomolekuláris szivattyúval szívott zsilipkamrán keresztül juttatjuk az analitikai kamrába.

A mérés-adatgyűjtés a VGX900 nevű szoftver segítségével automatizált. A detektorok által észlelt jelet megfelelő erősítés után a számítógép regisztrálja. A számítógép lépteti megadott diszkrét értékekkel a spektrométer energia-analizátorát, és lépésenként tárolja a jelintenzitást. A program rendelkezik adatfeldolgozási funkciókkal is.

AES spektrumok és kiértékelésük

A 3. ábrán szén mintán mért szekunder elektron eloszlás látható az energia függvényében. A mérés során a gerjesztő primer elektronok energiája 1000 eV volt. A spektrumon ennél az energiánál jelentkező nagy csúcs a rugalmasan visszaszórt elektronok következménye. A direkt spektrumon (N(E)) jól látható, hogy az Auger csúcsok egy igen nagy háttéren ülnek. Ez az Auger mérések nagy problémája. Ettől a folytonos lassan változó háttértől deriválással szabadulhatunk meg. A 3. ábrán a dN(E)/dE görbén már jól meghatározható helyen jelentkezik a C (KLL) csúcsa és a jel csúcstól csúcsig mért értéke is könnyen mérhető. A gyakorlatban az Auger csúcs nagyságát ezen csúcstól csúcsig mért távolsággal adjuk meg. Manapság az N(E) direkt spektrumból a dN(E)/dE spektrumot számítógéppel numerikus deriválással határozzák meg.

Mért direkt (N(E)) és derivált elektron eloszlás az energia függvényében 3. ábra

Kvalitatív analízis

Igen sok esetben csak arra van szükségünk, hogy eldöntsük egy adott felületen bizonyos kezelések, eljárások után van-e valamilyen elem. Ezekben az esetekben csak az a feladat, hogy elegendően széles energia tartományban nagy érzékenységgel vegyünk fel Auger elektron spektrumokat. A mért csúcsokat azonosítva a rendelkezésre álló enrgia táblázatok segítségével megválaszolható a kérdés, hogy az adott elem kimutathatósági határánál nagyobb koncentrációban milyen elemek vannak a felületen.

A SAM berendezésekkel vizsgálható és megjeleníthető egy adott elem felületi eloszlásképe is, ami különösen korróziós, katalitikus vagy szemcsehatár vizsgálatoknál nagy jelentőségű. Egy másik fontos információ egy adott elem mélységi eloszlásgörbéjének a felvétele, amire az AES berendezés porlasztásos üzemmódja ad lehetőséget. Ez főleg többrétegű szerkezeteknél, szegregációs vagy diffúziós vizsgálatoknál fontos.

Kvantitatív analízis

Egy AES mérésből nyerhető közvetlen információ a detektált elemek Auger elektron árama. Az i. elem WXY Auger átmeneténél ez az Auger elektronáram (vagy intenzitás) a következő egyszerűsített alakban adható meg:

\[I_i(WXZ) {{=}} I_p \cdot P_i(WXY) \cdot \sigma_i(E_p,E_W) \cdot \lambda_i(E_A) \cdot R(E_p) \cdot T(E_A) \cdot N \cdot X_i\]

ahol \setbox0\hbox{$I_p$}% \message{//depth:\the\dp0//}% \box0% a primer elektronáram erőssége és \setbox0\hbox{$E_p$}% \message{//depth:\the\dp0//}% \box0% a primer elektronok energiája, \setbox0\hbox{$E_W$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$E_A$}% \message{//depth:\the\dp0//}% \box0% a W atomi nívó ionizációs energiája illetve az Auger energia (az adott Auger átmenetből származó elektronok kinetikus energiája). \setbox0\hbox{$P_i(WXY)$}% \message{//depth:\the\dp0//}% \box0% annak a valószínűsége, hogy a gerjesztett atomnak a W-héj ionizációja után WXY típusú Auger-folyamata következik be, \setbox0\hbox{$\sigma_i(E_W)$}% \message{//depth:\the\dp0//}% \box0% a W-héj ionizációs hatáskeresztmetszete, \setbox0\hbox{$\lambda_i(E_A)$}% \message{//depth:\the\dp0//}% \box0% az i. elemből kilépő elektron közepes szabad úthossza, \setbox0\hbox{$R(E_p)$}% \message{//depth:\the\dp0//}% \box0% az elektron visszaszórási tényező, \setbox0\hbox{$T(E_A)$}% \message{//depth:\the\dp0//}% \box0% a berendezés transzmissziós együtthatója, \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0% az analizált anyagban lévő atomsűrűség és \setbox0\hbox{$X_i$}% \message{//depth:\the\dp0//}% \box0% az i. elem koncentrációja (atomtörtben).

Megjegyezzük, hogy a kémiai környezet hatását beleértettük az egyes paraméterek értékeibe. Általában elmondható, hogy a fenti összefüggésben szereplő tényezők a kísérleti körülményeknek és a mátrix-környezetnek bonyolult függvényei, és a mennyiségek utáni zárójelekben csak a legfontosabb paraméterek szerepelnek azok közül, amelyektől ezek a mennyiségek függenek.

A mérésekből nyerhető egyik legfontosabb információ az Xi elemkoncentráció. Ennek megállapítására az ad lehetőséget, hogy a (differenciális) energiaspektrum Auger-csúcsainak csúcstól-csúcsig mért nagysága jó közelítéssel arányos az Auger elektronok intenzitásával, ezzel viszont arányos az illető elem koncentrációja. A fenti összefüggésben célszerű bevezetni si érzékenységi faktornak nevezett mennyiséget, ekkor:

 
\[I_i(WXY) = I_p \cdot s_i \cdot N \cdot X_i\]
(1)

Mint láttuk si nagyon sok, néha csak nagy bizonytalansággal számolható, mennyiségtől függ. Azonban néhány megszorító feltételezés bevezetésével bizonyos mintatípusoknál a mennyiségi meghatározás módja leegyszerűsíthető. Így eltekintünk a felületi érdrsség befolyásoló szerepétől. (Az ebből származó hibát polírozott, vagy sík szemcsehatár felületek előállításával, illetőleg forgatható mintatartó alkalmazásával lehet csökkenteni.) Továbbá figyelembe vesszük, hogy a nem kifejezetten kémiai vegyületeknél a mátrix környezet elsősorban az elemek legkülső elektronhéjainak energiaviszonyait befolyásolja, és a mélynívókra gyakorolt hatása sokkal kisebb jelentőségű. (Így a kiértékelésnél csak azokat az energia csúcsokat használjuk fel, amelyeknek kialakításában a mélynívók vesznek részt.). Az si mátrix függése még tovább csökkenthető, ha relatív érzékenységi tényezőkkel (RSF) dolgozunk, azaz egy önkényesen megválasztott anyag (általában ezüst) érzékenységi faktorához viszonyítjuk (Si=si/sAg). Egy adott berendezés típusra valamennyi tiszta anyag relatív érzékenységi tényezője kimérhető és a fent ismertetett feltételek teljesülése esetén jó közelítéssel használható ismeretlen összetételű anyagokra is. (1) összefüggésből az adott elem koncentrációja (atomtörtben) kifejezve:

\[X_i {{=}} \frac{I_i(WXY)/s_i}{\sum_{k} I_k(WXY)/s_k}\]

ahol a k szerinti összegzés a minta összes detektálható elemére terjed ki. Végigosztva a számlálót is és a nevezőt is sAg-vel:

\[X_i {{=}} \frac{I_i(WXY)/S_i}{\sum_{k} I_k(WXY)/S_k}\]

Ez az összefüggés 10-15 % pontossággal alkalmazható nem kémiai vegyületek összetételének meghatározására. A módszer érzékenysége 1-5 at %, ami egyéb kémiai analízissel összehasonlítva igen szerénynek tűnhet. Azonban vegyük figyelembe, hogy az a térfogat amiből az információ származik néhány tized nm vastag réteg, közepesen jól fókuszált primer elektronnyaláb (átmérő: \setbox0\hbox{$\sim 1\mu$}% \message{//depth:\the\dp0//}% \box0% esetében, ~10-8 cm2 területű tartományából. Az atomi sűrűséget 1023 atom/cm3-nek véve 1% érzékenységgel számolva ez néhányszor 104 atom kimutatását jelenti.

Kötésállapot kimutatása

Az Auger mérésekből nyerhető másik fontos információ a kémiai kötésviszonyokra levonható következtetés. Erre az ad lehetőséget, hogy a különböző kémiai környezet különböző mértékű változásokat hozhat létre az Auger-elektronenergia csúcsok helyében és alakjában. Ez az eltolódás különösen szignifikáns a kis energiájú Auger-elektronenergia csúcsoknál, amelyekhez tartozó átmenetekben a vegyértéksáv is részt vesz.

Különböző kémiai kötésből származó C KLL derivált Auger elektron csúcs. SiC-on és grafiton mérve ion porlasztás előtt és után (a), különböző fémkarbidok összehasonlítása (b). 4. ábra

Mérési feladatok

A mérendő minták bezsilipelése az analitikai kamrába a gyakorlat megkezdése előtt már megtörténik. Az ionporlasztásos mérésekhez szükség van a turbomolekuláris szivattyú működtetésére, mivel a nemesgázokat az iongetter szivattyú nem jól szívja. Ezt a szivattyút szintén elindítjuk a gyakorlat megkezdése előtt.

Mielőtt megkezdjük a méréseket meg kell győződni róla, hogy elegendően jó vákuum van a kamrában (<10-8 mbar). Megmérjük az ionizációs vákuummérővel. A mintát mérőpozicióba helyezzük. (A mérésvezető megadja az aktuális x, y, z valamint szög értékeket.)

Bekapcsoljuk a számítógépet, elindítjuk az adatgyűjtő programot (XPS). A Set menüpontban betöltjük a SIO2AES.REG régió adatokat.

Bekapcsoljuk az „ENERGY DISPLAY” és a „LENS POWERSUPPLY” elektromos egységek főkapcsolóját. (Ezek segítségével tudjuk leolvasni az energia analizátoron átjutó elektronok aktuális energiáját.) Bekapcsoljuk a „SPECTROMETER CONTROL UNIT” egységet a POWER feliratú gombbal (ld.: 5a. ábra). Ezzel az egységgel tudjuk beállítani manuálisan az energia analizátor által átengedett elektron energia értékeket (ld.: 6 jelű beállítok). Ha az 1 jelű kapcsolót MgK.E. állásba és a 2 jelűt E állásba tesszük, az „ENERGY DISPLAY” a szekunder elektronok mozgási energiáját mutatja. AES méréseknél a 4 kapcsoló CRR (konstans retardációs energia) állásban legyen. A 3 jelű kapcsoló COMP állásban a számítógépnek adja át a vezérlést, kézi beállításokhoz az 50-es állásba helyezzük. Az 5 kapcsolónak SRART állásban kell lennie. Bekapcsoljuk az 5b. ábrán látható egységet, amely az energia analizátoron átjutó elektronok áramát méri. A channeltronra adott feszültségek be optimális értékre be vannak állítva, ehhez ne nyúljunk. Az 1 kapcsolót lefele kapcsolva rákerül a channeltronra a feszültség. A műszer alatt található 2 jelű kapcsolóval állítható a detektálás érzékenysége.

Az elektron ágyú tápegysége az 5e. ábrán látható, a primer elektronok irányítását és pásztázását az 5c. ábrán bemutatott IMAGING UNIT egység végzi. A mintán átfolyó áramot mérő műszer az 5d. ábrán látható. Ez az egység biztosítja a szcintillációs számlálóra adott feszültséget is. Ezeket az egységeket is bekapcsoljuk az 1 jelű kapcsolókkal. A visszaszórt szekunder elektron áram kép megjelenítéséhez a TV Capture Card programmal végezzük.

Az elektronágyú tápegységén lévő műszer alatt lévő kapcsolóval választható, hogy a Filament I –t (katód fűtő árama), HV-t (primer elektronok gyorsító feszültség) vagy a Beam I (nyaláb áram) beállított (Ref) illetve tényleges (Actual) értékét méri. A fenti értékeket a megfelelő 3, 4 és 5 potenciométerekkel állíthatjuk. A katód lassú felfűtésével kezdjük a beállításokat, bekapcsoljuk a 6 jelű kapcsolót és lassan (hogy gáztalanodjon a katód) növeljük a fűtőáramot a 3-as gombbal (maximum 2,4 A-ig). Beállítjuk a Beam I Ref értékét \setbox0\hbox{$200-300 \mu A$}% \message{//depth:\the\dp0//}% \box0%-re (5 gomb). Bekapcsoljuk a 7 kapcsolót és a 4-es gomb segítségével lassan növeljük a gyorsító feszültséget 2-3 kV értékig. Közben figyeljük a targeten átfolyó áram értékét (5d. ábrán 2-es kapcsoló off álásban, 3-es kapcsoló nA vagy μA méréshatárban). Ellenőrizzük, hogy a Beam I Actual értéke megegyezik-e a Ref értékkel. A 3 jelzésű potenciométer finom állításával maximalizáljuk a mintán átfolyó áramot. Az IMAGING UNIT –on az 5 kapcsoló AUGER állásban, a 6 INT állásban legyen. Tegyük a 2 kapcsolót (a kereszt irányú pásztázó feszültség amplitúdóját szabályozza) 1 állásba. Az 5d ábrán látható egység 3 kapcsolóját tegyük PM VOLTS állásba, a 2 kapcsolót ON-ba és 4 poenciotméter segítségével fokozatosan adjuk rá a fotoelektronsokszorozóra a feszültséget (700-800 fölé ne menjünk). Ekkor megjelenik a monitoron a minta visszaszórt elektron képe. A kép élességét az elektronágyú tápegységén (ld.: 5e. ábra) található 8 jelű gombok (FOCUS) segítségével tudjuk állítani. A kép minőségét az IMAGING UNIT (5c. ábra) 4 potenciométereivel illetve a fotoelektronsokszorozóra (5d. ábra 4) adott feszültség szabályzásával tudjuk javítani.

Ionporlasztás megkezdése előtt megnyitjuk az analitikai kamrához csatlakozó turbomolekuláris szivattyú és a kamra közötti szelepet és elzárjuk a kamra és az iongetter szivattyú közötti szelepet. Az ionágyúhoz csatlakozó finom-gázbeeresztő szelepen keresztül Ar gázt engedünk a kamrába kb. \setbox0\hbox{$50\cdot10^{-7}$}% \message{//depth:\the\dp0//}% \box0% mbar nyomásig. Bekapcsoljuk az ionágyú tápegységének (ld.: 5f. ábra) főkapcsolóját (1). Felkapcsoljuk a A HV (2) kapcsolót és a 3 potenciométer segítségével növeljük az emissziós áramot. A targetáram mérő műszeren (5d. ábra) kb. 1 \setbox0\hbox{$\mu A$}% \message{//depth:\the\dp0//}% \box0% targetáramot állítunk be.

5.a ábra.
5.b ábra.
5.c ábra.
5.d ábra.
5.e ábra.
5.f ábra.

Acél minta összetételének meghatározása

Cél: A minta felületének és ionporlasztással végzett tisztítás utáni összetételének meghatározása.

Polírozott acél minta felületéről Auger elektron spektrumokat veszünk fel, majd ezt megismételjük \setbox0\hbox{$1 \mu A$}% \message{//depth:\the\dp0//}% \box0% áramerősséggel végzett 30 perc ionporlasztás után. Előzetesen meggondoljuk a beállítandó energiatartományt, tartózkodási időt, adatgyűjtés lépésközét. A kiértékelés során a spektrumokat simítjuk, deriváljuk, azonosítjuk a detektált Auger elektron csúcsokat (ld.: 2. ábra), leolvassuk az intenzitásokat, majd koncentrációkat számolunk. A számolásnál használjuk a [2] hivatkozásban megadott érzékenységi faktor értékeket (a könyv a mérőberendezéshez készítve)! Összehasonlítjuk a felületről és az ionporlasztás után felvett spektrumokból nyert eredményeket.

Kémiai kötésállapot vizsgálata

Cél: A Si különböző kötésállapotainak tanulmányozása.

Vizsgálandó minta: Félvezető eszközök gyártásánál használt polírozott Si szeletből kivágott 1x1 cm-es darab, amire termikus oxidációval 50 nm vastag SiO2 réteget növesztettek.

Meggondoljuk, hogy milyen energiáknál várhatóak Auger elektron csúcsok, továbbá, hogy mely csúcsok lehetnek érzékenyek a kémiai kötésállapotra. Ennek alapján eldöntjük, hogy milyen energiatartományt, tartózkodási időt, adatgyűjtési lépésközt állítsunk be spektrumfelvételekhez. Felvesszük a spektrumokat, majd 10 percet \setbox0\hbox{$1\mu A$}% \message{//depth:\the\dp0//}% \box0%-rel porlasztjuk a felületet. Felvesszük a visszaszórt elektron képet. Ennek alapján AES spektrumot veszünk fel a porlasztott kráter közepéről és oldaláról. Összehasonlítjuk a derivált spektrumok alakját, értelmezzük.

Javasolt irodalom

  1. O. Brümmer, J, Heydenreich, K.H. Krebs, H.G. Schneider: Szilárd testek vizsgálata elektronokkal, ionokkal és röntgensugárzással. Műszaki Könyvkiadó, Budapest, 1984.
  2. L.E. Davis, N.C.MacDonald, P.W.Palmberg, G.E.Riach, R.E.Webwr: Handbook of Auger Electron Spectroscopy. Physical Electronics Industries, Minnesota, 1976.
  3. D. Briggs, M.P. Seah: Practical Surface Analysis, Vol 1.: Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons, New York, 1992.

PDF formátum