„Transzport nanovezetékekben: Landauer-formula, vezetőképesség-kvantálás” változatai közötti eltérés

A Fizipedia wikiből
(Landauer formula)
(Landauer formula)
98. sor: 98. sor:
  
 
<span id="abra2">
 
<span id="abra2">
[[Fájl:PointContact.jpg|közép|300px|Pontkontaktus]]
+
[[Fájl:PointContact.svg|közép|300px|Pontkontaktus]]
 
</span>
 
</span>
  

A lap 2013. április 28., 16:57-kori változata

Tartalomjegyzék

Karakterisztikus méretskálák


Egy nanométeres skálájú objektum vezetési tulajdonságai több szempontból eltérnek a makroszkopikus skálán megszokott jelenségektől. Makroszkopikus vezetékek ellenállása jól leírható az Ohm-törvénnyel: az áramsűrűség a fajlagos vezetőképesség és az elektromos tér szorzata, a vezetőképesség pedig arányos a vezeték keresztmetszettel és fordítottan arányos a hosszával:

\[\vec{j}=\sigma \cdot \vec{E}, \ \ \ G=R^{-1}=\frac{A\cdot \sigma}{L}\]

Az Ohm törvény egyszerűen magyarázható az elektromos vezetés Drude modelljével. Az elektronok a kristályrácsban két ütközés közötti \setbox0\hbox{$\tau_m$}% \message{//depth:\the\dp0//}% \box0% karakterisztikus idő alatt \setbox0\hbox{$p_\mathrm{drift}=m\cdot v_\mathrm{drift}=eE\tau_m$}% \message{//depth:\the\dp0//}% \box0% impulzust nyernek, majd a véletlen irányba történő szóródás hatására ezt elveszítik. Ennek megfelelően \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% elektronsűrűség esetén az az áramsűrűség illetve fajlagos vezetőképesség:

\[\vec{j}=n\cdot e\cdot v_\mathrm{drift}\ \ \ \rightarrow \ \ \ \sigma=\frac{ne^2\tau_m}{m}.\]

Az elektronok két ütközés között eltelt \setbox0\hbox{$\tau_m$}% \message{//depth:\the\dp0//}% \box0% momentumrelaxációs idő alatt \setbox0\hbox{$l_m=v_F\tau_m$}% \message{//depth:\the\dp0//}% \box0% utat tesznek meg, ahol \setbox0\hbox{$v_F$}% \message{//depth:\the\dp0//}% \box0% a Fermi sebesség. A Drude modell értelmét veszti ha a vizsgált vezeték karakterisztikus mérete (\setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0%) kisebb mint az ütközések skáláját jellemző \setbox0\hbox{$l_m$}% \message{//depth:\the\dp0//}% \box0% momentumrelaxációs szabadúthossz. Ezen feltétel alapján megkülönböztethetünk diffúzív vezetékeket (\setbox0\hbox{$L>l_m$}% \message{//depth:\the\dp0//}% \box0%), melyekben a elektronok sokszor szóródnak mialatt eljutnak az egyik elektródából a másikba, illetve ballisztikus nanovezetékeket (\setbox0\hbox{$L<l_m$}% \message{//depth:\the\dp0//}% \box0%), melyekben az elektronok csak a vezeték falán szóródnak, de a vezetéken belül nem.

Diffuziv vezetek.png
Ballisztikus vezetek.png
1a. ábra - Diffúzív vezeték 1b. ábra - Ballisztikus vezeték

A két határeset között lényeges különbséf jól szemléltethető az ellenállás hosszfüggésével: míg egy diffúzív vezeték ellenállása nő a vezeték hosszának növelésével, addig a ?? ábrán szemléltetett ballisztikus vezetékbe bejutó elektronok visszaszórás nélkül átjutnak a túloldalra, azaz az ellenállás nem függ a vezeték hosszától.

Az elektronok hullámtermészetét figyelembe véve azt is érdemes megvizsgálni, hogy a vizsgált rendszer méretének skáláján megőrződik-e az elektronhullámok fázisinformációja. Ha a minta mérete kisebb mint az \setbox0\hbox{$L_\phi$}% \message{//depth:\the\dp0//}% \box0% fázisrelaxációs hossz, akkor a vezetési tulajdonságok makroszkopikus skálán nem tapasztalható érdekes interferencia-jelenségeket mutatnak, melyeket a ?? fejezetben szemléltetünk.

További érdekes jelenségeket tapasztalhatunk, ha a vezeték keresztmetszete a az elektronok Fermi-hullámhosszával összemérhetővé válik, \setbox0\hbox{$L\sim \lambda_F$}% \message{//depth:\the\dp0//}% \box0%. Ezt a határesetet tárgyaljuk az alábbiakban.

Kvantumvezeték ellenállása


Az elektronok hullámhosszával összemérhető vezetékek tulajdonságait vizsgáljuk meg egy egyszerű modellel: két elektrontartályt kössünk össze egy kétdimenziós, párhuzamos falú ideális kvantumvezetékkel, melyben az elektronok szóródás nélkül haladnak (2. ábra).

Kvantumvezeték

Hard wall határfeltételt alkalmazva (azaz a bezáró potenciál a vezetéken belül ill. kívül zérus ill. végtelen) egyszerűen felírható az elektronok hullámfüggvénye:

\[\Psi_{n,k}(x,y)=e^{ikx}\cdot \sin\left(\frac{n \pi y}{W} \right),\]

azaz hosszirányban (\setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0%) síkhullám terjedést, keresztirányban pedig kvantált állóhullámokat kapunk. Ennek megfelelően az elektronok energiája:

\[\epsilon_n(k)=\frac{\hbar^2k^2}{2 m} + \frac{\pi^2 \hbar^2}{2 m W^2}\cdot n^2\]

ahol \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% az \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0%-irányú síkhullám terjedéshez tartozó hullámszám, \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% pedig a kvantált keresztmódust (\setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0%-irányú állóhullámot) jellemzi. Az energiakifejezés a 3a ábrán szemléltetett, egymáshoz képest a keresztirányú energiák szerint eltolt egydimenziós diszperziós relációknak felel meg. Értelemszerűen csak azon módusokon (ún. vezetési csatornákon) keresztül folyhat áram, melyekhez tartozó tartozó keresztirányú energia kisebb az elektródák Fermi energiájánál, azaz a diszperziós reláció metszi a Fermi szintet. Ezen feltételnek megfelelő módusokat nyitott vezetési csatornának nevezzük, a nyitott csatornák számát \setbox0\hbox{$M$}% \message{//depth:\the\dp0//}% \box0%-el jelöljük.

Disp.jpg
Disp biased.jpg
3a. ábra - Diszperzós reláció 3b. ábra - Diszperzós reláció a mintára feszültséget kapcsolva


Ha a két elektrontartály közé \setbox0\hbox{$V$}% \message{//depth:\the\dp0//}% \box0% feszültséget kapcsolunk akkor a nanovezeték elektronállapotai a 3b ábrán szemléltetett módon töltődnek be: a pozitív \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0%-val rendelkező állapotok mind a bal oldali elektródából származnak, így ezek \setbox0\hbox{$eV$}% \message{//depth:\the\dp0//}% \box0%-vel magasabb energiáig vannak betöltve mint a jobb oldali elektródából származó, negatív \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0%-val rendelkező állapotok. Áramot csak a \setbox0\hbox{$\mu_1$}% \message{//depth:\the\dp0//}% \box0% ás \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% kémiai potenciál közötti tartományban levő pozitív \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0%-jú állapotok szállítanak, hiszen \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% kémiai potenciál alatt a pozitív és negatív irányba haladó állapotok egyaránt betöltöttek, így eredő áramuk zérus lesz.

Egy adott vezetési csatornára az elektronok sebességét, illetve az \setbox0\hbox{$eV$}% \message{//depth:\the\dp0//}% \box0% energiasávban található elektronok sűrűségét a következőképpen írhatjuk:

\[v_n=\frac{1}{\hbar}\frac{\partial \epsilon_n(k)}{\partial k},\ \ \ \  n_n=\frac{eV}{2\pi}\left(\frac{\partial \epsilon_n(k)}{\partial k}\right)^{-1}.\]

A vezetékben folyó áram számolásához az elektrontöltés, a sebesség és az elektronsűrűség szorzatát kell képezni, illetve ezt összegezni a különböző vezetési csatornákra:

\[I=2\sum_{n=1}^{M}e v_n n_n =\frac{2e^2}{h}MV,\]

ahol a kettes szorzó a spin szerinti degenerációnak felel meg. Mivel a sebesség és az elektronsűrűség szorzatában az energiadiszperzió deriváltja kiesik, a kvantumvezeték vezetőképessége egyszerűen a vezetőképesség-kvantum egész számú többszörösének adódik. Érdemes megjegyezni, hogy a hosszirányú irányú transzlációinvariancia miatt az \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% irányú impulzus megmarad, így az egyes csatornák között nem történhet átszóródás, mert az a \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% hullámszám megváltozásával járna, azaz a vezetési csatornák áramjárulékát valóban tekinthetjük egymástól függetlennek.

A fenti számolásban abból indultunk ki, hogy csak az elektródák kémiai potenciálja alatt találunk betöltött állapotokat, azaz zérus hőmérsékletet tételezünk fel. Véges hőmérsékleten a kémiai potenciál \setbox0\hbox{$kT$}% \message{//depth:\the\dp0//}% \box0% szélességű környezetében egyaránt találhatók betöltött és betöltetlen állapotok, az állapotok betöltöttségének valószínűségét a Fermi-függvény írja le:

\[f(\epsilon)=\frac{1}{e^{\frac{\epsilon -\mu}{kT}}+1}.\]

Az kvantumvezeték belsejében a \setbox0\hbox{$k>0$}% \message{//depth:\the\dp0//}% \box0%, bal oldali elektródából származó elektronállapotok betöltöttségét az 1-es elektróda \setbox0\hbox{$f_l(\epsilon)$}% \message{//depth:\the\dp0//}% \box0% betöltési szám függvénye írja le, míg a \setbox0\hbox{$k<0$}% \message{//depth:\the\dp0//}% \box0% állapotok a 2-es elektróda \setbox0\hbox{$f_2(\epsilon)$}% \message{//depth:\the\dp0//}% \box0% betöltési szám függvényével jellemezhető, ahol \setbox0\hbox{$f_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$f_2$}% \message{//depth:\the\dp0//}% \box0% egymáshoz képest \setbox0\hbox{$eV$}% \message{//depth:\the\dp0//}% \box0% energiával eltolt Fermi függvények. Ez a leírás egyben az elektrontartályok tökéletességét is feltételezi, azaz a kvantumvezetékből az egyik elektródába érkező elektronok csak termalizálódás után szóródhatnak vissza a kvantumvezetékbe, így az elektródát elhagyó elektronok valóban az elektróda Fermi-függvénye szerinti energiaeloszlást követik. A fentiek alapján véges hőmérsékleten a vezetékben pozitív illetve negatív irányba folyó áramot a

\[I^+=\frac{2 e}{L} \sum \limits_{k>0} v_k f_1(\epsilon_k) = 2e \int \frac{\mathrm{d}k}{2 \pi}\frac{\partial \epsilon_k}{\hbar \partial k} f_1(\epsilon_k) = \frac{2 e}{h}\int \mathrm{d} \epsilon f_1(\epsilon)\]
\[I^-=\frac{2 e}{L} \sum \limits_{k<0} v_k f_2(\epsilon_k) = \frac{2 e}{h}\int \mathrm{d} \epsilon f_2(\epsilon)\]

képletek írják le, azaz az eredő áram:

\[I=I^+-I^-=\frac{2 e}{h} \int \mathrm{d} \epsilon (f_1(\epsilon)-f_2(\epsilon))=\frac{2 e}{h}e V.\]

Mivel \setbox0\hbox{$\int \mathrm{d} \epsilon (f_1(\epsilon)-f_2(\epsilon))$}% \message{//depth:\the\dp0//}% \box0% integrál tetszóleg hőmérsékleten \setbox0\hbox{$eV$}% \message{//depth:\the\dp0//}% \box0%-vel egyenlő, így egy egycsatornás ideális kvantumvezeték ellenállása tetszőleges hőmérsékleten a \setbox0\hbox{$G_0=\frac{2 e^2}{h}$}% \message{//depth:\the\dp0//}% \box0% vezetőképesség-kvantum.


Landauer formula


Most tekintsük azt az egyszerű modellt, amikor egy egycsatornás, ideális kvantumvezeték közepén egy szórócentrum található, melyen \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% valószínűséggel jutnak át az elektronok. Ebben az esetben már nem mondható hogy hogy a pozitív (negatív) \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0%-val rendelkező állapotok mind a bal (jobb) oldali elektródából származnak, hiszen például a szórócentrumtól balra levő kvantumvezetékbe \setbox0\hbox{$k<0$}% \message{//depth:\the\dp0//}% \box0% állapot egyaránt lehet a 2-es elektródából induló és a szórócentrumon átjutó vagy az 1-es elektródából induló és a szórócentrumon visszaverődő állapot.

Kvantumvezeték + szórócentrum

Zérus hőmérsékleten csak a \setbox0\hbox{$\mu_2$}% \message{//depth:\the\dp0//}% \box0% kémiai potenciál alatti állapotok származhatnak mindkét elektródából, azonban az \setbox0\hbox{$\epsilon<\mu_2$}% \message{//depth:\the\dp0//}% \box0% állapotok teljes árama értelemszerűen zérust ad, hiszen ez annak felel meg, mintha zérus feszültséget kapcsoltunk volna a rendszerre. Így a véges áramért továbbra is \setbox0\hbox{$\mu_2 <\epsilon< \mu_1$}% \message{//depth:\the\dp0//}% \box0% állapotok felelnek, melyek csak az 1-es elektródából származhatnak.

\[\mathrm{d}I_1^+(\epsilon)=\frac{2 e}{h}\cdot f_1(\epsilon)\mathrm{d}\epsilon,\;\; \mathrm{d}I_2^-(\epsilon)=\frac{2 e}{h}\cdot f_2(\epsilon)\mathrm{d}\epsilon\]
\[\mathrm{d}I_1^-(\epsilon)=\mathrm{d}I_1^+(\epsilon)\cdot (1-T) + \mathrm{d}I_2^-(\epsilon)\cdot T,\;\; \mathrm{d}I_1=\mathrm{d}I_1^+ - \mathrm{d}I_1^- = \frac{2 e}{h} \cdot T \cdot [f_1(\epsilon)-f_2(\epsilon)]\mathrm{d}\epsilon\]
\[I=\int \mathrm{d}I_1(\epsilon) = \frac{2 e}{h} \cdot \int T\cdot [f_1(\epsilon)-f_2(\epsilon)]\mathrm{d}\epsilon = \frac{2 e}{h}\cdot eV \cdot T\]
\[G=\frac{2 e^2}{h}\cdot T\]





A csatornák nem tudnak egymásba átszóródni, mert ez sértené az impulzusmegmaradást, így függetlennek tekinthetjük őket.

\[G=\frac{2 e^2}{h}M\]


Pontkontaktus




Egy atomi méretű kontaktust modellezhetünk úgy, mint két ideális kvantumvezetéket, melyeket egy szórási tartomány köt össze. A bal oldali \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0%-edik vezetési csatornából a jobb oldali \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0%-edik csatornába való átjutáshoz hozzárendelhetünk egy \setbox0\hbox{$T_{nm}$}% \message{//depth:\the\dp0//}% \box0% transzmissziós valószínűséget. A rendszer vezetőképességét ezen valószínűségekből a Landauer formula segítségével számolhatjuk: \begin{equation} G=\frac{2e^2}{h}\sum_{n,m=1}^{M}T_{nm}. \end{equation} Megfelelő bázisba való áttéréssel elérhetjük, hogy a bal oldali \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0%-edik módus csak a jobb oldali \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0%-edik módusba tudjon szóródni. Ebben a \emph{sajátbázisban} a rendszer \setbox0\hbox{$M$}% \message{//depth:\the\dp0//}% \box0% darab egymástól független egycsatornás vezetéknek tekinthető. Minden csatornához hozzárendelhetünk egy \setbox0\hbox{$\tau_n$}% \message{//depth:\the\dp0//}% \box0% \emph{transzmissziós sajátértéket}, melyekkel a vezetőképesség \begin{equation} G=\frac{2e^2}{h}\sum_{n=1}^{M}\tau_{n} \end{equation} alakban írható. Ezen transzmissziós sajátértékek halmaza jól jellemzi a kontaktus vezetési tulajdonságait, így a \setbox0\hbox{$\tau_n$}% \message{//depth:\the\dp0//}% \box0% értékek halmazát gyakran ``mezoszkópikus PIN-kódnak is nevezik \cite{agrait03}.



Egy vezetési csatornában folyó áram: (Ideális elektrontartály!!!)

\[I^+=\frac{2 e}{L} \sum \limits_{k>0} v_k f_1(\epsilon_k) = 2e \int \frac{\mathrm{d}k}{2 \pi}\frac{\partial \epsilon_k}{\hbar \partial k} f_1(\epsilon_k) = \frac{2 e}{h}\int \mathrm{d} \epsilon f_1(\epsilon)\]
\[I^-=\frac{2 e}{L} \sum \limits_{k<0} v_k f_2(\epsilon_k) = \frac{2 e}{h}\int \mathrm{d} \epsilon f_2(\epsilon)\]
\[I=I^+-I^-=\frac{2 e}{h} \int \mathrm{d} \epsilon (f_1(\epsilon)-f_2(\epsilon))=\frac{2 e}{h}e V, \;\; G_0=\frac{2 e^2}{h}\]

A csatornák nem tudnak egymásba átszóródni, mert ez sértené az impulzusmegmaradást, így függetlennek tekinthetjük őket.

\[G=\frac{2 e^2}{h}M\]



Pontkontaktus

Két ideális kvantumvezeték kvantált keresztmódusokkal, köztük egy \setbox0\hbox{$t$}% \message{//depth:\the\dp0//}% \box0% transzmissziós mátrix-szal leírható keskeny csatorna:

\[|out \rangle_R = \hat{t} |in \rangle_L\]

A vezetőképességet a Landauer formula adja meg:

\[G = \frac{2 e^2}{h} \mathrm{Tr}(\hat{t}^\dagger \hat{t}) = \frac{2 e^2}{h} \sum \limits_{i=1..N} T_i\]
  • Megfelelő sajátbázisban a vezetőképesség transzmissziós sajátértékek összege, ún. „mezoszkópikus PIN kód”.

Az elektronok részecsketermészete \setbox0\hbox{$\longrightarrow$}% \message{//depth:\the\dp0//}% \box0% "sörét" zaj

Sörétzaj

  • Áram mérésekor vagy teljesen transzmittált, vagy teljesen reflektált elektront detektálunk, "fél" elektront soha.
  • Időegység alatt transzmittált elektronok számának várható értéke:
\[\langle N \rangle \sim G \sim T\]

de \setbox0\hbox{$T=0$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$T=1$}% \message{//depth:\the\dp0//}% \box0% kivételével véges szórást is tapasztalunk:

\[\langle(N-\langle N \rangle)^2\rangle \sim T\cdot(1-T)\]

Vezetőképesség kvantálás kvantum pont-kontaktusban


Kvantum pont-kontaktus: két elektródát egy keskeny, hullámhosszal összemérhető szélességű csatorna köt össze, melynek a szélességét középen egy kapuelektródára tett feszültséggel változtathatjuk.

  • A kontaktus közepe felé haladva ez elektron keresztirányú energiája nő, hosszirányú kinetikus energiája pedig csökken.
  • Adiabatikusan változó csatornaszélességnél a csatornák nem tudnak egymásba szóródni, függetlennek tekinthetők.
  • A kontaktus közepénél a legtöbb csatorna keresztirányú energiája nagyobb mint a Fermi energia, ezek a módusok visszaverődnek a kontaktusról.
  • A kontaktus közepén is nyitott csatornák T=1 valószínűséggel átjutnak, hiszen a visszaverődés jelentős impulzusváltozással járna.

Pontkontaktus

Nyitott csatornák száma a kontaktus közepén:

\[G=\frac{2 e^2}{h}N_c\]

Vezetőképesség kvantálás!