„Vékonyréteg leválasztás” változatai közötti eltérés

A Fizipedia wikiből
10. sor: 10. sor:
 
Egy zárt rendszerben 0 K-nél magasabb, állandó T hőmérsékleten az anyag felületéről kilépő és a felületre visszatérő atomok dinamikus egyensúlyban vannak, melyet az adott hőmérséklethez tartozó P egyensúlyi telített gőznyomással (tenzióval) jellemezhetünk. Az egykomponensű rendszer két fázisának egyensúlyi feltételét a Clausius-Clapeyron egyenlet adja meg:
 
Egy zárt rendszerben 0 K-nél magasabb, állandó T hőmérsékleten az anyag felületéről kilépő és a felületre visszatérő atomok dinamikus egyensúlyban vannak, melyet az adott hőmérséklethez tartozó P egyensúlyi telített gőznyomással (tenzióval) jellemezhetünk. Az egykomponensű rendszer két fázisának egyensúlyi feltételét a Clausius-Clapeyron egyenlet adja meg:
  
{{NumBlk||$$ \frac{dp}{dT}=\frac{L_m}{T{\Delta}V_m} $$|1}}
+
<!--{{NumBlk||$$ \frac{dp}{dT}=\frac{L_m}{T{\Delta}V_m} $$|1}}-->
 +
 
 +
$$ \frac{dp}{dT}=\frac{L_m}{T{\Delta}V_m} $$
  
 
ahol $L_m$ a fázisátalakuláshoz szükséges moláris hőmennyiség, ${\Delta}V_m$ pedig a két fázis móltérfogatának különbsége $(V_m^I-V_m^{II})$.
 
ahol $L_m$ a fázisátalakuláshoz szükséges moláris hőmennyiség, ${\Delta}V_m$ pedig a két fázis móltérfogatának különbsége $(V_m^I-V_m^{II})$.
  
Szilárd-gőz fázisátalakulás esetén a szilárd fázis moláris térfogata $(V_m^{II})$ elhanyagolható a gőz fázis moláris térfogata $(V_m^I)$ mellett, így a ${\Delta}V_m{\cong}V_m^I=RT/P$ (R: az egyetemes gázállandó) összefüggést az {{EquationNote|1}} egyenletbe behelyettesítve az alábbi összefüggést kapjuk:
+
Szilárd-gőz fázisátalakulás esetén a szilárd fázis moláris térfogata $(V_m^{II})$ elhanyagolható a gőz fázis moláris térfogata $(V_m^I)$ mellett, így a ${\Delta}V_m{\cong}V_m^I=RT/P$ (R: az egyetemes gázállandó) összefüggést az <!--{{EquationNote|1}}-->egyenletbe behelyettesítve az alábbi összefüggést kapjuk:
  
 +
<!--{{NumBlk||$$ \frac{dp}{dT}=\frac{pL_m}{T^2{\Delta}V_m} $$|2}}-->
  
 +
$$ \frac{dp}{dT}=\frac{pL_m}{T^2{\Delta}V_m} $$
  
 +
Az egyenlet <!--{{EquationNote|2}}--> integrálása után megkapjuk az egyensúlyi telített gőznyomás hőmérsékletfüggését:
 +
 +
<!--{{NumBlk||$$ \ln p=-\frac{L_m}{RT}+konst $$|3}}-->
 +
 +
$$ \ln p=-\frac{L_m}{RT}+konst $$
 +
 +
ahol $L_m$ és az integrálási konstans anyagfüggők.
 +
 +
Az 1. ábra az egyensúlyi telített gőznyomás hőmérsékletfüggését mutatja különböző fémek esetén.
 +
 +
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
| [[Fájl:Tenzio_femek.svg|közép|400px|Az egyensúlyi telített gőznyomás (p) hőmérsékletfüggése különböző fémek esetén]]
 +
|-
 +
| align="center"|1. ábra: Az egyensúlyi telített gőznyomás (p) hőmérsékletfüggése különböző fémek esetén.
 +
|}
 +
 +
Az 1. ábráról az alábbi következtetések olvashatók le:
 +
* Adott fém esetén a hőmérséklet növelésével a gőznyomás több nagyságrendet is változik, ezért a vákuumpárologtatás során a rétegleválasztási sebesség széles határok között változtatható.
 +
* A W, Ta, Nb, Mo fémek gőznyomása a legalacsonyabb adott hőmérsékleten, ezért  - mint később látni fogjuk - ezeket a fémeket használják olyan esetekben, ahol magas hőmérsékleten alacsony gőznyomás szükséges.
 
</wlatex>
 
</wlatex>
 +
 +
==== Gőzök térbeli eloszlása (iránykarakterisztika) ====
 +
<wlatex>
 +
Kisméretű síkforrás esetén (ld. 2. ábra) a $\phi$ irányú, $\Theta$ szöghelyzetű, a forrástól r távolságban lévő, dA felületű hordozóra elpárologtatott dM($\phi$,$\Theta$) anyagmennyiség az alábbi koszinuszos összefüggéssel írható fel:
 +
 +
<!--{{NumBlk||$$ \frac{dM(\phi,\Theta)}{dA}=\frac{M\cos {\Theta}}{r^2\pi}\cos {\phi} $$|4}}-->
 +
 +
$$ \frac{dM(\phi,\Theta)}{dA}=\frac{M\cos {\Theta}}{r^2\pi}\cos {\phi} $$
 +
 +
ahol M az összes elpárologtatott anyag tömege.
 +
 +
A fenti <!--{{EquationNote|4}}--> összefüggés alapján látható, hogy a hordozó felületére levált anyagmennyiség a forrás és a hordozó távolságának négyzetével fordítottan arányos. Ez csak akkor igaz, ha gőzatomok átlagos szabad úthossza sokkal nagyobb a vákuumkamra méreténél. Nagy gőznyomás (kis átlagos szabad úthossz) esetén figyelembe kell venni a gőzatomok egymással történő ütközését is. Ekkor r hatványkitevője 2-nél, $\cos {\phi}$ hatványkitevője pedig 1-nél nagyobb értéket vesz fel.
 +
 +
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
| [[Fájl:iranykarakterisztika_sikforras.svg|közép|250px|Segédábra a kisméretű síkforrás iránykarakterisztikájának meghatározásához]]
 +
|-
 +
| align="center"|2. ábra: Segédábra a kisméretű síkforrás iránykarakterisztikájának meghatározásához.
 +
|}
 +
</wlatex>
 +
 +
=== Vákuumpárologtató berendezés felépítése ===
 +
A vákuumpárologtatás alapfolyamatai:
 +
* leválasztani kívánat anyag megfelelő nyomású gőzfázisának létrehozása,
 +
* gőzrészecskék transzportja a hordozóig,
 +
* gőzrészecskék kondenzációja a hordozón.
 +
 +
A vákuumpárologtatást speciálisan kialakított, vákuum-berendezésekben valósítják meg. Egy ilyen berendezés sematikus felépítése látható a 3. ábrán.
 +
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
| [[Fájl:Parologtato_kamra.svg|közép|400px|Vákuumpárologtató berendezés sematikus felépítése]]
 +
|-
 +
| align="center"|3. ábra: Vákuumpárologtató berendezés sematikus felépítése.
 +
|}
 +
 +
A párologtató forrás az elpárologtatni kívánt anyagból (forrásanyag) és a forrástartóból  áll. A forrástartóban melegítjük fel a forrásanyagot a kívánt hőmérsékletre. A forrástartó anyagával szemben támasztott követelmények: a) magas olvadáspont, alacsony tenzió; b) kicsi diffúziós állandó; c) ne ötvöződjön és ne lépjen kémiai reakcióba a párologtatandó anyaggal.
 +
 +
A leválasztani kívánt forrásanyag szilárd vagy folyadék halmazállapotú, melynek tisztasága nagymértékben befolyásolja a lekondenzálódó vékonyréteg szennyezettségét. Általában 5 9-es (99.999%), vagy annál tisztább anyagokat használnak.
 +
 +
A párologtatás megkezdésekor a hordozót mozgatható takarólemezekkel választják el a forrástól. A forrásból elpárologatott atomok a takarólemez nyitott állapotában érik el a hordozót.
 +
 +
A hordozó hőmérséklete a kondenzáció és a felületi migráció mértékét, ezáltal a leváló réteg szerkezetét, morfológiáját határozza meg. A hordozó fűtése lehetőségét nyújt a szubsztrát - rétegleválasztás előtti - tisztítására is.
 +
 +
A vákuumkamra kinyitása (fellevegőzése) előtt célszerű a kamrát száraz nitrogénnel feltölteni a vízgőz adszorpciójának megelőzése céljából.
 +
Meg kell különböztetni a kamra háttérnyomását az úgynevezett "üzemi" nyomástól. Háttérnyomás alatt a hideg kamrában előállított nyomást értjük, ami üzemi körülmények között (párologtatás alatt) nagyságrendekkel is megemelkedhet. A kamra elővákuumra történő leszívását általában rotációs szivattyúval biztosítják. A szükséges nagyvákuumot  turbomolekuláris szivattyú, krioszivattyú, vagy olajdiffúziós szivattyú segítségével érik el. A cseppfolyós nitrogénnel hűtött kifagyasztó csapda alkalmazása előnyös, mivel javítja a háttérnyomást.
 +
 +
A berendezés háttérnyomása a leválasztott réteg tisztaságát határozza meg, kisebb háttérnyomás (kevesebb szennyező) esetén tisztább réteget kapunk. Adott háttérnyomás esetén a rétegleválasztási sebesség (elpárologtatott anyagmennyiség) növelésével érhető el tisztább réteg.
 +
Hatékony párologtatás esetén az elpárologtatandó anyagot olyan hőmérsékletre melegítik fel, amelyen az egyensúlyi telített gőznyomása 10<sup>-4</sup> mbar-nál nagyobb (tipikusan 10<sup>-2</sup> mbar), de a folyamatos elszívás (vákuumszivattyúk) következtében a vákuumkamrában a nyomása - a párologtatás során - ennél alacsonyabb. Egyenletes vastagságú vékonyréteg kialakulásához az szükséges, hogy az elpárologtatandó anyag gőzrészecskéi ütközés nélkül jussanak el a hordozóhoz. Ez akkor teljesül, ha a gőzrészecskék átlagos szabad úthossza nagyobb a forrás és a hordozó távolságnál. Például 10-100 cm forrás-hordozó távolság esetén a vákuumkamrában 10<sup>-5</sup> mbar-nál kisebb nyomás szükséges.
 +
 +
Az elpárologtatott anyag mennyiségét megadó <!--{{EquationNote|4}}--> összefüggés alapján látható, hogy a hordozó felületére lekondenzált anyagmennyiség (rétegvastagság) függ a forrás és a hordozó távolságától, ezért az egyenletes rétegvastagság eléréséhez bonyolult mintatartó konstrukciókat alkalmaznak. Az egyszerű sík illetve kupola formájú mintatartók esetén (4. ábra) a réteg vastagsága 5-10%-ban tér el a mintatartó közepe és széle között. Bonyolult, planetáris mozgást végző sík illetve kupola formájú mintatartók (4. ábra) alkalmazásával a rétegvastagság eltérése 1%-ra csökkenthető.
 +
 +
Adott mintatartó konstrukció esetén a rétegvastagság szórása csökkenthető a forrás és a hordozó távolságának növelésével is.  Ebben az esetben nagyobb vákuum (nagyobb szabad úthossz) szükséges ahhoz, hogy az elpárologtatandó anyag gőzrészecskéi ütközés nélkül jussanak el a hordozóig. Nagy forrás-hordozó távolság esetén viszont nagyobb forrásanyag veszteséggel kell számolnunk (a leváló anyagmennyiség a távolság négyzetének reciprokával arányos).
 +
A rétegvastagság szórása több forrás egyidejű alkalmazásával is csökkenthető.
 +
 +
Összefoglalva az eddig leírtakat. A vákuumpárologtatással leválasztott réteg minősége az alábbi főbb paraméterektől függ:
 +
* vákuumkamra nyomása,
 +
* forrásanyag (elpárolgatatandó anyag) és forrástartó  tisztasága,
 +
* forrásanyag gőznyomása,
 +
* hordozó hőmérséklete,
 +
* forrás és hordozó távolsága,
 +
* mintatartó konstrukció.
 +
{|  cellpadding="5" cellspacing="0" align="center"
 +
|-
 +
| [[Fájl:mintatartok_vakuumparologtatas.svg|közép|400px|Mintatartó konstrukciók]]
 +
|-
 +
| align="center"|4. ábra: Mintatartó konstrukciók.
 +
|}
 +
 +
=== Vákuumpárologtató berendezések ===
 +
Az elpárologtatandó anyag atomjait energiaközlés (fűtés) segítségével juttatjuk a gőzfázisba. Ez alapján megkülönböztetünk ellenállás-, elektronsugaras-, indukciós- és lézeres fűtésű forrásokat. A fűtés lehet közvetett vagy közvetlen is.

A lap 2013. március 24., 16:09-kori változata

SZERKESZTÉS ALATT!!

Tartalomjegyzék

Vákuumpárologtatás / vákuumgőzölés

A vákuumpárologtatás - vékonyrétegek előállítására szolgáló - fizikai gőzfázisú leválasztási eljárás (PVD, Physical Vapor Deposition). A leválasztani kívánt anyagot vákuumtérben - magas hőmérsékletre hevítve - elpárologtatják, majd az a bevonni kívánt munkadarab / hordozó / szubsztrát felületére lekondenzálva kialakítja a vékonyréteget.

Fizikai elméleti alapok

Egyensúlyi telített gőznyomás


Egy zárt rendszerben 0 K-nél magasabb, állandó T hőmérsékleten az anyag felületéről kilépő és a felületre visszatérő atomok dinamikus egyensúlyban vannak, melyet az adott hőmérséklethez tartozó P egyensúlyi telített gőznyomással (tenzióval) jellemezhetünk. Az egykomponensű rendszer két fázisának egyensúlyi feltételét a Clausius-Clapeyron egyenlet adja meg:


\[ \frac{dp}{dT}=\frac{L_m}{T{\Delta}V_m} \]

ahol \setbox0\hbox{$L_m$}% \message{//depth:\the\dp0//}% \box0% a fázisátalakuláshoz szükséges moláris hőmennyiség, \setbox0\hbox{${\Delta}V_m$}% \message{//depth:\the\dp0//}% \box0% pedig a két fázis móltérfogatának különbsége \setbox0\hbox{$(V_m^I-V_m^{II})$}% \message{//depth:\the\dp0//}% \box0%.

Szilárd-gőz fázisátalakulás esetén a szilárd fázis moláris térfogata \setbox0\hbox{$(V_m^{II})$}% \message{//depth:\the\dp0//}% \box0% elhanyagolható a gőz fázis moláris térfogata \setbox0\hbox{$(V_m^I)$}% \message{//depth:\the\dp0//}% \box0% mellett, így a \setbox0\hbox{${\Delta}V_m{\cong}V_m^I=RT/P$}% \message{//depth:\the\dp0//}% \box0% (R: az egyetemes gázállandó) összefüggést az egyenletbe behelyettesítve az alábbi összefüggést kapjuk:


\[ \frac{dp}{dT}=\frac{pL_m}{T^2{\Delta}V_m} \]

Az egyenlet integrálása után megkapjuk az egyensúlyi telített gőznyomás hőmérsékletfüggését:


\[ \ln p=-\frac{L_m}{RT}+konst \]

ahol \setbox0\hbox{$L_m$}% \message{//depth:\the\dp0//}% \box0% és az integrálási konstans anyagfüggők.

Az 1. ábra az egyensúlyi telített gőznyomás hőmérsékletfüggését mutatja különböző fémek esetén.

Az egyensúlyi telített gőznyomás (p) hőmérsékletfüggése különböző fémek esetén
1. ábra: Az egyensúlyi telített gőznyomás (p) hőmérsékletfüggése különböző fémek esetén.

Az 1. ábráról az alábbi következtetések olvashatók le:

  • Adott fém esetén a hőmérséklet növelésével a gőznyomás több nagyságrendet is változik, ezért a vákuumpárologtatás során a rétegleválasztási sebesség széles határok között változtatható.
  • A W, Ta, Nb, Mo fémek gőznyomása a legalacsonyabb adott hőmérsékleten, ezért - mint később látni fogjuk - ezeket a fémeket használják olyan esetekben, ahol magas hőmérsékleten alacsony gőznyomás szükséges.

Gőzök térbeli eloszlása (iránykarakterisztika)


Kisméretű síkforrás esetén (ld. 2. ábra) a \setbox0\hbox{$\phi$}% \message{//depth:\the\dp0//}% \box0% irányú, \setbox0\hbox{$\Theta$}% \message{//depth:\the\dp0//}% \box0% szöghelyzetű, a forrástól r távolságban lévő, dA felületű hordozóra elpárologtatott dM(\setbox0\hbox{$\phi$}% \message{//depth:\the\dp0//}% \box0%,\setbox0\hbox{$\Theta$}% \message{//depth:\the\dp0//}% \box0%) anyagmennyiség az alábbi koszinuszos összefüggéssel írható fel:


\[ \frac{dM(\phi,\Theta)}{dA}=\frac{M\cos {\Theta}}{r^2\pi}\cos {\phi} \]

ahol M az összes elpárologtatott anyag tömege.

A fenti összefüggés alapján látható, hogy a hordozó felületére levált anyagmennyiség a forrás és a hordozó távolságának négyzetével fordítottan arányos. Ez csak akkor igaz, ha gőzatomok átlagos szabad úthossza sokkal nagyobb a vákuumkamra méreténél. Nagy gőznyomás (kis átlagos szabad úthossz) esetén figyelembe kell venni a gőzatomok egymással történő ütközését is. Ekkor r hatványkitevője 2-nél, \setbox0\hbox{$\cos {\phi}$}% \message{//depth:\the\dp0//}% \box0% hatványkitevője pedig 1-nél nagyobb értéket vesz fel.

Segédábra a kisméretű síkforrás iránykarakterisztikájának meghatározásához
2. ábra: Segédábra a kisméretű síkforrás iránykarakterisztikájának meghatározásához.

Vákuumpárologtató berendezés felépítése

A vákuumpárologtatás alapfolyamatai:

  • leválasztani kívánat anyag megfelelő nyomású gőzfázisának létrehozása,
  • gőzrészecskék transzportja a hordozóig,
  • gőzrészecskék kondenzációja a hordozón.

A vákuumpárologtatást speciálisan kialakított, vákuum-berendezésekben valósítják meg. Egy ilyen berendezés sematikus felépítése látható a 3. ábrán.

Vákuumpárologtató berendezés sematikus felépítése
3. ábra: Vákuumpárologtató berendezés sematikus felépítése.

A párologtató forrás az elpárologtatni kívánt anyagból (forrásanyag) és a forrástartóból áll. A forrástartóban melegítjük fel a forrásanyagot a kívánt hőmérsékletre. A forrástartó anyagával szemben támasztott követelmények: a) magas olvadáspont, alacsony tenzió; b) kicsi diffúziós állandó; c) ne ötvöződjön és ne lépjen kémiai reakcióba a párologtatandó anyaggal.

A leválasztani kívánt forrásanyag szilárd vagy folyadék halmazállapotú, melynek tisztasága nagymértékben befolyásolja a lekondenzálódó vékonyréteg szennyezettségét. Általában 5 9-es (99.999%), vagy annál tisztább anyagokat használnak.

A párologtatás megkezdésekor a hordozót mozgatható takarólemezekkel választják el a forrástól. A forrásból elpárologatott atomok a takarólemez nyitott állapotában érik el a hordozót.

A hordozó hőmérséklete a kondenzáció és a felületi migráció mértékét, ezáltal a leváló réteg szerkezetét, morfológiáját határozza meg. A hordozó fűtése lehetőségét nyújt a szubsztrát - rétegleválasztás előtti - tisztítására is.

A vákuumkamra kinyitása (fellevegőzése) előtt célszerű a kamrát száraz nitrogénnel feltölteni a vízgőz adszorpciójának megelőzése céljából. Meg kell különböztetni a kamra háttérnyomását az úgynevezett "üzemi" nyomástól. Háttérnyomás alatt a hideg kamrában előállított nyomást értjük, ami üzemi körülmények között (párologtatás alatt) nagyságrendekkel is megemelkedhet. A kamra elővákuumra történő leszívását általában rotációs szivattyúval biztosítják. A szükséges nagyvákuumot turbomolekuláris szivattyú, krioszivattyú, vagy olajdiffúziós szivattyú segítségével érik el. A cseppfolyós nitrogénnel hűtött kifagyasztó csapda alkalmazása előnyös, mivel javítja a háttérnyomást.

A berendezés háttérnyomása a leválasztott réteg tisztaságát határozza meg, kisebb háttérnyomás (kevesebb szennyező) esetén tisztább réteget kapunk. Adott háttérnyomás esetén a rétegleválasztási sebesség (elpárologtatott anyagmennyiség) növelésével érhető el tisztább réteg. Hatékony párologtatás esetén az elpárologtatandó anyagot olyan hőmérsékletre melegítik fel, amelyen az egyensúlyi telített gőznyomása 10-4 mbar-nál nagyobb (tipikusan 10-2 mbar), de a folyamatos elszívás (vákuumszivattyúk) következtében a vákuumkamrában a nyomása - a párologtatás során - ennél alacsonyabb. Egyenletes vastagságú vékonyréteg kialakulásához az szükséges, hogy az elpárologtatandó anyag gőzrészecskéi ütközés nélkül jussanak el a hordozóhoz. Ez akkor teljesül, ha a gőzrészecskék átlagos szabad úthossza nagyobb a forrás és a hordozó távolságnál. Például 10-100 cm forrás-hordozó távolság esetén a vákuumkamrában 10-5 mbar-nál kisebb nyomás szükséges.

Az elpárologtatott anyag mennyiségét megadó összefüggés alapján látható, hogy a hordozó felületére lekondenzált anyagmennyiség (rétegvastagság) függ a forrás és a hordozó távolságától, ezért az egyenletes rétegvastagság eléréséhez bonyolult mintatartó konstrukciókat alkalmaznak. Az egyszerű sík illetve kupola formájú mintatartók esetén (4. ábra) a réteg vastagsága 5-10%-ban tér el a mintatartó közepe és széle között. Bonyolult, planetáris mozgást végző sík illetve kupola formájú mintatartók (4. ábra) alkalmazásával a rétegvastagság eltérése 1%-ra csökkenthető.

Adott mintatartó konstrukció esetén a rétegvastagság szórása csökkenthető a forrás és a hordozó távolságának növelésével is. Ebben az esetben nagyobb vákuum (nagyobb szabad úthossz) szükséges ahhoz, hogy az elpárologtatandó anyag gőzrészecskéi ütközés nélkül jussanak el a hordozóig. Nagy forrás-hordozó távolság esetén viszont nagyobb forrásanyag veszteséggel kell számolnunk (a leváló anyagmennyiség a távolság négyzetének reciprokával arányos). A rétegvastagság szórása több forrás egyidejű alkalmazásával is csökkenthető.

Összefoglalva az eddig leírtakat. A vákuumpárologtatással leválasztott réteg minősége az alábbi főbb paraméterektől függ:

  • vákuumkamra nyomása,
  • forrásanyag (elpárolgatatandó anyag) és forrástartó tisztasága,
  • forrásanyag gőznyomása,
  • hordozó hőmérséklete,
  • forrás és hordozó távolsága,
  • mintatartó konstrukció.
Mintatartó konstrukciók
4. ábra: Mintatartó konstrukciók.

Vákuumpárologtató berendezések

Az elpárologtatandó anyag atomjait energiaközlés (fűtés) segítségével juttatjuk a gőzfázisba. Ez alapján megkülönböztetünk ellenállás-, elektronsugaras-, indukciós- és lézeres fűtésű forrásokat. A fűtés lehet közvetett vagy közvetlen is.