„Vizsgálat oszcilloszkóppal” változatai közötti eltérés

A Fizipedia wikiből
55. sor: 55. sor:
  
 
A függőlegesen eltérítő lemezekre feszültséget kapcsolva a lemezek között kialakuló elektromos tér ($E$) $F = qE$ nagyságú erővel hat a $v$ kezdősebességgel a lemezek közé érkező $q$ töltésű elektronokra (2. ábra).
 
A függőlegesen eltérítő lemezekre feszültséget kapcsolva a lemezek között kialakuló elektromos tér ($E$) $F = qE$ nagyságú erővel hat a $v$ kezdősebességgel a lemezek közé érkező $q$ töltésű elektronokra (2. ábra).
 +
 +
[[Fájl:Katodsugarcso.jpg|bélyegkép|180px|2.ábra]]
 +
 +
Ennek hatására az elektronok $ a=\frac{qE}{m} $ gyorsulással mozognak függőleges irányba.
 +
 +
Vízszintes irányú sebességük változatlan, ezért a befutott pálya a lemezek között parabola lesz (vízszintes hajítás).
 +
 +
{| cellpadding="2" style="border: 0px solid darkgray;" align="center"
 +
|- border="0"
 +
|- align="center"
 +
| width="250pt" | <div class="texdisplay"><latex display >\[ x=vt ,  \]</latex></div>
 +
| width="250pt" | <div class="texdisplay"><latex display >\[ y=\frac{a}{2}t^2,  \]</latex></div>
 +
| width="250pt" | <div class="texdisplay"><latex display >\[ y=\frac{qE}{2mv^2}x^2  \]</latex></div>
 +
|}
 +
 +
Az elektronok a lemezeket elhagyva a pálya $ x = l $ pontbeli érintője mentén állandó sebességgel haladnak tovább. A lemezek középpontjától $L$ távolságban levő képernyőt $D$ magasságban érik el. A pálya iránytangense a lemezek szélénél:

A lap 2012. február 11., 01:01-kori változata

Szerkesztés alatt!


Tartalomjegyzék


A mérés célja:

- megismerkedni az elektronikai méréstechnikában leg-gyakrabban használt készülék, az oszcilloszkóp működésével és használatával.

Ennek érdekében:

- megismerkedünk az oszcilloszkóp felépítésével és kezelőszerveivel;

- megvizsgáljuk néhány jelalak fontosabb jellemzőit;

- néhány egyszerű áramkörben megvizsgáljuk a fellépő feszültségek fázisviszonyait.

Elméleti összefoglaló

Az oszcilloszkóp

Az oszcilloszkóp az elektronikai méréstechnika leggyakrabban használt, legsokoldalúbb készüléke. Közvetlenül feszültség - idő függvényt vagy fázishelyzetet jelenít meg a képernyőjén. Ez a megjelenítő képesség az, ami lényegesen több információ megszerzését teszi lehetővé, mint amennyi például multiméterrel lehetséges.

Oszcilloszkóppal az alábbi mennyiségek mérhetők közvetlen vagy közvetett módon:

- egyenfeszültség;

- váltakozó feszültség;

- egyenáram;

- váltakozó áram;

- idő, időkülönbség;

- fázis, fáziskülönbség;

- frekvencia.

Oszcilloszkópos vizsgálattal észrevehető a jelalak torzulása, mérhető a jel egyen- és váltóáramú komponense, gerjedés, felharmonikusok jelenléte látható. Többcsatornás készülékkel lehetséges több, általában kettő vagy négy időfüggvény egyidejű vizsgálata és összehasonlítása.

Az oszcilloszkóp felépítése és működése

Az oszcilloszkóp fő részeit és kapcsolódásukat az 1. ábra mutatja.

1.ábra

Katódsugárcső

Az oszcilloszkóppal vizsgált jelalakok megjelenítését végzi megfelelő vezérlés esetén. A katódsugárcső kúpos kialakítású, tölcsérszerű zárt vákuumcső. Vékony, hengeres részében van az elektronágyú. A fűtött katódból az anód és katód közötti elektromos tér hatására kilépnek az elektronok és az anód felé gyorsulnak. Ha \setbox0\hbox{$U_a$}% \message{//depth:\the\dp0//}% \box0% az anód és katód közötti potenciálkülönbség, \setbox0\hbox{$b$}% \message{//depth:\the\dp0//}% \box0% a katód-anód távolság, az \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű, \setbox0\hbox{$-q$}% \message{//depth:\the\dp0//}% \box0% töltésű elektronra az így kialakuló \setbox0\hbox{$E = U_a/b$}% \message{//depth:\the\dp0//}% \box0% nagyságú térerősség \setbox0\hbox{$F = qE$}% \message{//depth:\the\dp0//}% \box0% erővel hat az anód irányába. A munkatételt alkalmazva írhatjuk, hogy \setbox0\hbox{$ Fb=\frac{mv^2}{2} $}% \message{//depth:\the\dp0//}% \box0%, ebből az elektronok sebessége az anódnál kifejezhető: \setbox0\hbox{$ v=\sqrt{\frac{2q}{m}}\sqrt{U_a} $}% \message{//depth:\the\dp0//}% \box0%. (Feltételeztük, hogy a katódból kilépő elektronok sebessége elhanyagolható.)

Az anódon levő résen áthaladó elektronokat egy fókuszáló rendszer nyalábbá formálja. A sugár vízszintes és függőleges irányú eltérítését síkkondenzátor-szerű, egymással 90°-os szöget bezáró párhuzamos lemezpárok közötti elektromos tér végzi. A cső kiszélesedő végét lezáró oldal belső felülete fluoreszkáló anyaggal van bevonva. A képernyőre elegendően nagy sebességgel becsapódó elektronok rövid idejű felvillanást okoznak.

A cső geometriai és elektromos paraméterei nagymértékben meghatározzák az egész készülék használhatóságát.

A függőlegesen eltérítő lemezekre feszültséget kapcsolva a lemezek között kialakuló elektromos tér (\setbox0\hbox{$E$}% \message{//depth:\the\dp0//}% \box0%) \setbox0\hbox{$F = qE$}% \message{//depth:\the\dp0//}% \box0% nagyságú erővel hat a \setbox0\hbox{$v$}% \message{//depth:\the\dp0//}% \box0% kezdősebességgel a lemezek közé érkező \setbox0\hbox{$q$}% \message{//depth:\the\dp0//}% \box0% töltésű elektronokra (2. ábra).

2.ábra

Ennek hatására az elektronok \setbox0\hbox{$ a=\frac{qE}{m} $}% \message{//depth:\the\dp0//}% \box0% gyorsulással mozognak függőleges irányba.

Vízszintes irányú sebességük változatlan, ezért a befutott pálya a lemezek között parabola lesz (vízszintes hajítás).

\[ x=vt ,  \]
\[ y=\frac{a}{2}t^2,   \]
\[ y=\frac{qE}{2mv^2}x^2   \]

Az elektronok a lemezeket elhagyva a pálya \setbox0\hbox{$ x = l $}% \message{//depth:\the\dp0//}% \box0% pontbeli érintője mentén állandó sebességgel haladnak tovább. A lemezek középpontjától \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0% távolságban levő képernyőt \setbox0\hbox{$D$}% \message{//depth:\the\dp0//}% \box0% magasságban érik el. A pálya iránytangense a lemezek szélénél: