„Vizsgálat oszcilloszkóppal” változatai közötti eltérés

A Fizipedia wikiből
101. sor: 101. sor:
  
 
====Fűrészjel generátor====
 
====Fűrészjel generátor====
 
Az oszcilloszkóppal leggyakrabban periodikus időfüggvényeket vizsgálunk, vagyis a  képernyő vízszintes tengelye az időtengely. Mivel a jelek időben nagyon gyorsan változnak, a bejövő jel egy darabjának egyszerű felrajzolását szemmel nem tudjuk értékelni és nem lehet kiértékelni, ezért biztosítani kell a folyamatos, azonos pozíciójú ábrázolást.  A fűrészjel generátor a 3. ábrán látható jelet állítja elő, amely a vízszintes erősítőn keresztül a vízszintesen eltérítő lemezpárra jut. A felerősített jel akkora, hogy az elektronnyalábot a képernyő szélső pontjáig kitéríti.
 
  
 
[[Fájl:Fureszjel.jpg|bélyegkép|180px|3.ábra]]
 
[[Fájl:Fureszjel.jpg|bélyegkép|180px|3.ábra]]
 +
 +
Az oszcilloszkóppal leggyakrabban periodikus időfüggvényeket vizsgálunk, vagyis a  képernyő vízszintes tengelye az időtengely. Mivel a jelek időben nagyon gyorsan változnak, a bejövő jel egy darabjának egyszerű felrajzolását szemmel nem tudjuk értékelni és nem lehet kiértékelni, ezért biztosítani kell a folyamatos, azonos pozíciójú ábrázolást.  A fűrészjel generátor a 3. ábrán látható jelet állítja elő, amely a vízszintes erősítőn keresztül a vízszintesen eltérítő lemezpárra jut. A felerősített jel akkora, hogy az elektronnyalábot a képernyő szélső pontjáig kitéríti.
  
 
A jel periódusideje változtatható, ez az idő lesz a vízszintes tengely "hossza", ennyi idő alatt fut végig az elektronnyaláb a képernyőn. A periódusidő minél tágabb határok között  változtatható, annál gyorsabb jelek vizsgálatára van mód, mert akkor kapunk jól kiértékelhető ábrát, ha a bejövő jel változási sebessége (függőleges eltérítés) és vízszintes eltérítés sebessége azonos nagyságrendű. (Másként fogalmazva: a fűrészjel periódusideje közel egyenlő legyen a bejövő jel néhány periódusával.)
 
A jel periódusideje változtatható, ez az idő lesz a vízszintes tengely "hossza", ennyi idő alatt fut végig az elektronnyaláb a képernyőn. A periódusidő minél tágabb határok között  változtatható, annál gyorsabb jelek vizsgálatára van mód, mert akkor kapunk jól kiértékelhető ábrát, ha a bejövő jel változási sebessége (függőleges eltérítés) és vízszintes eltérítés sebessége azonos nagyságrendű. (Másként fogalmazva: a fűrészjel periódusideje közel egyenlő legyen a bejövő jel néhány periódusával.)

A lap 2012. február 11., 01:43-kori változata

Szerkesztés alatt!


Tartalomjegyzék


A mérés célja:

- megismerkedni az elektronikai méréstechnikában leg-gyakrabban használt készülék, az oszcilloszkóp működésével és használatával.

Ennek érdekében:

- megismerkedünk az oszcilloszkóp felépítésével és kezelőszerveivel;

- megvizsgáljuk néhány jelalak fontosabb jellemzőit;

- néhány egyszerű áramkörben megvizsgáljuk a fellépő feszültségek fázisviszonyait.

Elméleti összefoglaló

Az oszcilloszkóp

Az oszcilloszkóp az elektronikai méréstechnika leggyakrabban használt, legsokoldalúbb készüléke. Közvetlenül feszültség - idő függvényt vagy fázishelyzetet jelenít meg a képernyőjén. Ez a megjelenítő képesség az, ami lényegesen több információ megszerzését teszi lehetővé, mint amennyi például multiméterrel lehetséges.

Oszcilloszkóppal az alábbi mennyiségek mérhetők közvetlen vagy közvetett módon:

- egyenfeszültség;

- váltakozó feszültség;

- egyenáram;

- váltakozó áram;

- idő, időkülönbség;

- fázis, fáziskülönbség;

- frekvencia.

Oszcilloszkópos vizsgálattal észrevehető a jelalak torzulása, mérhető a jel egyen- és váltóáramú komponense, gerjedés, felharmonikusok jelenléte látható. Többcsatornás készülékkel lehetséges több, általában kettő vagy négy időfüggvény egyidejű vizsgálata és összehasonlítása.

Az oszcilloszkóp felépítése és működése

Az oszcilloszkóp fő részeit és kapcsolódásukat az 1. ábra mutatja.

1.ábra

Katódsugárcső

Az oszcilloszkóppal vizsgált jelalakok megjelenítését végzi megfelelő vezérlés esetén. A katódsugárcső kúpos kialakítású, tölcsérszerű zárt vákuumcső. Vékony, hengeres részében van az elektronágyú. A fűtött katódból az anód és katód közötti elektromos tér hatására kilépnek az elektronok és az anód felé gyorsulnak. Ha \setbox0\hbox{$U_a$}% \message{//depth:\the\dp0//}% \box0% az anód és katód közötti potenciálkülönbség, \setbox0\hbox{$b$}% \message{//depth:\the\dp0//}% \box0% a katód-anód távolság, az \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű, \setbox0\hbox{$-q$}% \message{//depth:\the\dp0//}% \box0% töltésű elektronra az így kialakuló \setbox0\hbox{$E = U_a/b$}% \message{//depth:\the\dp0//}% \box0% nagyságú térerősség \setbox0\hbox{$F = qE$}% \message{//depth:\the\dp0//}% \box0% erővel hat az anód irányába. A munkatételt alkalmazva írhatjuk, hogy \setbox0\hbox{$ Fb=\frac{mv^2}{2} $}% \message{//depth:\the\dp0//}% \box0%, ebből az elektronok sebessége az anódnál kifejezhető: \setbox0\hbox{$ v=\sqrt{\frac{2q}{m}}\sqrt{U_a} $}% \message{//depth:\the\dp0//}% \box0%. (Feltételeztük, hogy a katódból kilépő elektronok sebessége elhanyagolható.)

Az anódon levő résen áthaladó elektronokat egy fókuszáló rendszer nyalábbá formálja. A sugár vízszintes és függőleges irányú eltérítését síkkondenzátor-szerű, egymással 90°-os szöget bezáró párhuzamos lemezpárok közötti elektromos tér végzi. A cső kiszélesedő végét lezáró oldal belső felülete fluoreszkáló anyaggal van bevonva. A képernyőre elegendően nagy sebességgel becsapódó elektronok rövid idejű felvillanást okoznak.

A cső geometriai és elektromos paraméterei nagymértékben meghatározzák az egész készülék használhatóságát.

A függőlegesen eltérítő lemezekre feszültséget kapcsolva a lemezek között kialakuló elektromos tér (\setbox0\hbox{$E$}% \message{//depth:\the\dp0//}% \box0%) \setbox0\hbox{$F = qE$}% \message{//depth:\the\dp0//}% \box0% nagyságú erővel hat a \setbox0\hbox{$v$}% \message{//depth:\the\dp0//}% \box0% kezdősebességgel a lemezek közé érkező \setbox0\hbox{$q$}% \message{//depth:\the\dp0//}% \box0% töltésű elektronokra (2. ábra).

2.ábra

Ennek hatására az elektronok \setbox0\hbox{$ a=\frac{qE}{m} $}% \message{//depth:\the\dp0//}% \box0% gyorsulással mozognak függőleges irányba.

Vízszintes irányú sebességük változatlan, ezért a befutott pálya a lemezek között parabola lesz (vízszintes hajítás).

\[ x=vt ,  \]
\[ y=\frac{a}{2}t^2,   \]
\[ y=\frac{qE}{2mv^2}x^2   \]

Az elektronok a lemezeket elhagyva a pálya \setbox0\hbox{$ x = l $}% \message{//depth:\the\dp0//}% \box0% pontbeli érintője mentén állandó sebességgel haladnak tovább. A lemezek középpontjától \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0% távolságban levő képernyőt \setbox0\hbox{$D$}% \message{//depth:\the\dp0//}% \box0% magasságban érik el. A pálya iránytangense a lemezek szélénél:

\[ \textrm{tg}\alpha = \frac{qEl}{mv^2} ; \]

az egyenes egyenlete: \setbox0\hbox{$y=\frac{qEl}{mv^2}(x-\frac{l}{2})$}% \message{//depth:\the\dp0//}% \box0%.

Az eltérítés mértéke az \setbox0\hbox{$x = (L + l/2)$}% \message{//depth:\the\dp0//}% \box0% helyen:

\[ D = \frac{qE}{mv^2}lL  \]

A lemezek közötti térerősség a rájuk kapcsolt eltérítő feszültségből származik: \setbox0\hbox{$E=\frac{U_e}{d}$}% \message{//depth:\the\dp0//}% \box0%.

Ezeket felhasználva az eltérítésre a következő összefüggés adódik: \setbox0\hbox{$D = \frac{lL}{2dU_a}U_e$}% \message{//depth:\the\dp0//}% \box0%.

A katódsugárcső érzékenységét az egységnyi eltérítő feszültség hatására létrejövő eltérüléssel definiáljuk:

\[ E = \frac{D}{U_e}=\frac{lL}{2dU_a}  \]

Fűrészjel generátor

3.ábra

Az oszcilloszkóppal leggyakrabban periodikus időfüggvényeket vizsgálunk, vagyis a képernyő vízszintes tengelye az időtengely. Mivel a jelek időben nagyon gyorsan változnak, a bejövő jel egy darabjának egyszerű felrajzolását szemmel nem tudjuk értékelni és nem lehet kiértékelni, ezért biztosítani kell a folyamatos, azonos pozíciójú ábrázolást. A fűrészjel generátor a 3. ábrán látható jelet állítja elő, amely a vízszintes erősítőn keresztül a vízszintesen eltérítő lemezpárra jut. A felerősített jel akkora, hogy az elektronnyalábot a képernyő szélső pontjáig kitéríti.

A jel periódusideje változtatható, ez az idő lesz a vízszintes tengely "hossza", ennyi idő alatt fut végig az elektronnyaláb a képernyőn. A periódusidő minél tágabb határok között változtatható, annál gyorsabb jelek vizsgálatára van mód, mert akkor kapunk jól kiértékelhető ábrát, ha a bejövő jel változási sebessége (függőleges eltérítés) és vízszintes eltérítés sebessége azonos nagyságrendű. (Másként fogalmazva: a fűrészjel periódusideje közel egyenlő legyen a bejövő jel néhány periódusával.)

Indító jel képző (szinkronizáló)

A szinkronizáló egység feladata, hogy a gyorsan változó bejövő jeleket azonos kezdőfázissal kezdje kirajzolni a képernyőre. A 4. ábrán látható szinusz-jel érkezik az \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0% bemenetre. A \setbox0\hbox{$0$}% \message{//depth:\the\dp0//}% \box0% időpontban a fűrészjel generátor feszültségének értéke legyen \setbox0\hbox{$–U_a$}% \message{//depth:\the\dp0//}% \box0%, vagyis az elektronsugár a képernyő bal szélén, középen van. Ha \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% a fűrészfeszültség periódusideje, akkor az ábrán görbedarabot fogjuk látni a képernyőn. Amikor a nyaláb visszafut a képernyő bal szélére, \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0% irányú kitérés nem egyezik meg az előző induláskor felvett értékkel. Ezért, ha most azonnal kezdődne a következő vízszintes kitérítés (indulna a fűrészjel-feszültség második periódusa), akkor a képernyőn az előzőhöz képest egy másik görbedarabot rajzolna fel. Ezt így folytatva könnyen belátható, hogy a különböző szinusz-darabok halmaza miatt egy világító sávot látnánk kiértékelhető jel helyett. A szinkronizáló egység feladata, hogy a fűrészjel generátor következő periódusát a bejövő jel egy beállítható értéke elérése esetén engedi csak elindulni. Ez azt jelenti, hogy az \setbox0\hbox{$Y$}% \message{//depth:\the\dp0//}% \box0% jel \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% hosszúságú, azonos kezdőfázisú szakaszait rajzolja egymásra. A jel ábrán jelölt részeit nem fogjuk látni, de ez nem okoz információ veszteséget, mert ha \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%-t úgy választjuk meg, hogy az nagyobb, mint a bejövő jel periódusa, akkor a jelről minden információ leolvasható.