Magas átmeneti hőmérsékletű szupravezető fázisátalakulásának vizsgálata

A Fizipedia wikiből


Új mérésleírás és információ

Az új kísérleti felállítás kapcsolási rajzokkal (egyelőre csak angolul) megtalálható itt.

A Pt1000 szenzor kalibrációs görbéjének lehet használni itt található képleteket. Egyszerűség kedvéért a 0 Celsius felett érvényes másodfokút lehet használni. A negatív hőmérsékleten fellépő hibát lehet közel lineárisnak tekinteni és a kritikus hőmérséklet pontos megadását ezzel a hibával korrigálva megadni, ismerve a nitrogén forrási hőmérsékletét (77K).

Az utolsó résznél 10 percig kell mérni a szupravezető gyűrűben a mágneses teret. Erre majd egy exponenciális lecsengést kell próbálni illeszteni, \setbox0\hbox{$I_0 e^{-\frac{R}{L}t}$}% \message{//depth:\the\dp0//}% \box0% alakban, ahol L a gyűrű induktivitása, t az eltelt idő és R a szupravezető ellenállása. Vegyük észre, hogy R=0 esetén a köráram konstans marad idővel, ezt kell majd a kísérletben megfigyelni. Az illesztés alapján egy 10 perces mérés után R=0-t általában 4-5 nagyságrenddel pontosabban lehet megadni, mint az előző multiméteres feladatnál.

A szupravezetésről dióhéjban


Heike Kamerlingh Onnes holland fizikus, miután megépítette hélium cseppfolyósító berendezését, elsőként végezhetett kísérleteket az abszolút nulla fokhoz igazán közeli hőmérsékleteken. Alacsony hőmérsékleti mérései rövid időn belül, 1911-ben nagyon meghökkentő felfedezéshez vezettek: azt találta, hogy egy higanyszál ellenállása 4,19 K hőmérséklet alatt zérusra csökken. Később kiderült, hogy számos anyag (pl. ólom, ón, alumínium) tökéletes vezetőként, úgynevezett szupvavezetőként viselkedik megfelelően alacsony hőmérsékleten. Kammerling Onnes munkáját már két évvel később, 1913-ban Nobel-díjjal jutalmazták.

A szupravezetés felfedezését követően közel fél évszázadot kellett várni a jelenség elméletének megszületésére (J. Bardeen, L. Cooper, R. Schiffer – 1957, Nobel-díj: 1972). Eszerint a szupravezető áramot szállító töltések különös tulajdonságokkal rendelkező elektron-párok, amelyek az egyszerű elektronoktól eltérő módon terjednek egy kristályban. Az ún. Cooper-párok viselkedésének kísérleti vizsgálata (Nobel-díj: 1973) vezetett a későbbiekben olyan alkalmazási lehetőségekre, mint a legérzékenyebb mágneses tér szenzor (SQUID) megalkotása, a világ leggyorsabb “hagyományos” számítógépeinek készítése, vagy a szupravezető nanoszerkezeteken alapuló kvantum-számítógépek perspektívája.

Onnes korai felfedezése óta a szupravezetés folyamatosan a modern fizika kiemelt témái közé tartozik. Ezt jelzi, hogy szupravezetéssel kapcsolatos elméleti vagy kísérleti munkákért a fentieken kívül 1987-ben és 2003-ban is osztottak ki Nobel-díjakat. Kiemelkedő technikai jelentőségű a magashőmérsékletű szupravezetőkért odaítélt Nobel-díj (1987), hiszen ekkor vált lehetővé, hogy a folyékony héliumnál lényegesen olcsóbb folyékony nitrogen forráspontján is elérhető legyen a szupravezetés. Az ilyen új anyagok kedvező tulajdonságai révén olyan lehetőségek is ígéretessé váltak, mint szupravezető motorok vagy távvezetékek készítése. A laboratóriumi gyakorlat keretében magashőmérsékleti szupravezető anyag szupravezető fázisátalakulását vizsgáljuk.

A szupravezetés másik kísérő jelensége az 1933-ban felfedezett ún. Meissner-effektus. Meissner és Ochsenfeld megmutatták, hogy egy kritikus érték alatt a mágneses tér nem tud behatolni a szupravezetők belsejébe, valamint a véges mágneses térben lehűtött és szupravezetővé vált anyagok az átalakulási hőmérsékletük alá hűtve kiszorítják magukból a mágneses teret. Míg az előbbi tulajdonság önmagában megmagyarázható az időben változó külső mágneses tér által keltett, és a szupravezetők nulla elektromos ellenállása miatt nem csillapodó köráramok következtében fellépő kompenzáló mágneses térrel, az utóbbi jelenség túlmutat a klasszikus elektromosságtan keretein.

A szupravezető állapotban tapasztalt nulla elektromos ellenállás lehetővé teszi, hogy egy szupravezető tekercsbe áramot vezetve, majd a tápegységet kiiktatva és a tekercs végeit rövidre zárva a tekercsben keringő, akár 100 Amperes nagyságú, időben nem csillapodó áramokkal több Tesla nagyságú mágneses tereket tartsunk fenn további külső meghajtás nélkül. Napjainkban ezt az elvet használják ki a mágnesesen lebegtetett vonatok, az orvosi MRI készülékek vagy a CERN részecskegyorsító szupravezető mágneseiben. A laboratóriumi gyakorlat keretében egy egyszerűsített elrendezésben vizsgáljuk a csillapítatlan köráramot. Egy szupravezető gyűrű belsejében nem változhat a mágneses fluxus, hiszen a fluxusváltozás hatására feszültség indukálódna, de a zérus ellenállás miatt nem eshet feszültség a szupravezetőben. Ennek megfelelően mágneses térben lehűtött szupravezető gyűrű belsejében a külső tér lekapcsolása után is bent marad, “befagy” a mágneses fluxus, amit a külső tér kikapcsolása után a gyűrűben folyó, csillapítatlan szupravezető köráram tart fenn.

Mágneses tér mérése GMR szenzorral


A szupravezető gyűrű belsejében felépülő vagy onnan kiszoruló mágneses teret a merevlemezek olvasófejeiben is alkalmazott mágneses tér érzékelő szenzorral mérhetjük. Az ilyen, ún. óriás mágneses ellenállást (GMR) mutató nanoszerkezetek felfedezése (1988) Albert Fert és Peter Grünberg nevéhez kötődik, akik 2007-ben Nobel-díjat kaptak felfedezésükért. A szerkezet két ferromágneses rétegből áll, amelyeket egy vékony nemmágneses réteg választ el egymástól (lásd 1. ábra, alsó panel). A felhasznált anyagok és a nemmágneses réteg vastagságának megfelelő megválasztásával elérhető, hogy külső mágneses tér hiányában a két réteg mágnesezettsége egymással ellentétes irányú legyen. Erre az elrendezésre megfelelő nagyságú külső mágneses teret kapcsolva a két réteg mágnesezettségét beforgathatjuk egymással párhuzamos irányba. A mágnesezettség párhuzamos (parallel, P) állása esetén a rétegszerkezet ellenállása lényegesen kisebb, mint az ellentétes (antiparallel, AP) beállás esetén, így külső mágneses tér alkalmazásával jelentős ellenállás-csökkenést tudunk elérni. Ezt a jelenséget hívjuk óriás mágneses ellenállásnak.

Gmr2.png
1. ábra. Az óriás mágneses ellenállás szemléltetése.

A jelenséget hátterében az áll, hogy az elektromos vezetési tulajdonságok függnek attól, hogy az elektronok spinje (illetve mágneses momentuma) milyen irányban áll a ferromágneses réteg mágnesezettségéhez képest. Az elrendezés valamelyest hasonlít az optikai polárszűrőkhöz: keresztezett polárszűrőkön kevés, míg azonos állású polárszűrőkön sok fény halad át. Fontos azonban megjegyezni, hogy a GMR jelenség csak nanoszerkezetekben jelentkezik, ha a két mágneses réteget lényegesen vastagabb nemmágneses réteg választja el, akkor az elektronok mire a második rétegbe jutnak, különböző kölcsönhatási mechanizmusoknak köszönhetően már elfelejtik, hogy milyen mágnesezettségi irányú rétegből jönnek, így az ellenállás nem függ a két réteg mágnesezettségének irányától. Optikában ez annak feleltethető meg, mint ha a két polárszűrő közé egy olyan diffúz közeget helyeznénk, mely véletlenszerűen elforgatja a polarizációt.

Az elektronikai iparban a mágneses ellenálláson alapuló technológiák első és máig is legjelentősebb felhasználása a merevlemezek olvasófejéhez kapcsolódik. Ezekben az 1990-es évek elején induktív olvasófejeket alkalmaztak: a merevlemezeken mágnesesen tárolt információ kiolvasását a gyorsan forgó mágneses lemez által egy kis tekercsben indukált feszültség segítségével végezték. Az 1990-es évek közepén áttérve a magnetorezisztív technológiára először az anizotróp mágneses ellenálláson (AMR) alapuló olvasófejek terjedtek el. Az AMR fejeknek köszönhetően jelentős tárolókapacitás-növekedést sikerült elérni, azonban az AMR jelenség kis, <1 százalékos ellenállás-változása a későbbiekben komoly korlátozó tényezővé vált. A GMR jelensége ezt az értéket egy nagyságrenddel meghaladja, így az 1990-es évek vége óta a merevlemezekben a GMR jelenségén alapuló olvasófejeket használnak. Ezzel a módszerrel a merevlemezek tárolókapacitásának további jelentős növekedését lehetett elérni.

A GMR olvasófejek az ún. spin-szelep elrendezést követik. A két mágneses rétegből az egyik rögzített, nehezen elfordítható irányú mágnesezettséggel rendelkezik, míg a másik egy könnyen forgatható mágnesezettségű réteg (2. ábra). Az utóbbi réteg mágnesezettsége az olvasófej alatt forgó merevlemezen tárolt bitek mágnesezési irányának megfelelően áll be, így az információ a spinszelep ellenállásának mérésével egyszerűen kiolvasható.

Gmr1.png
2. ábra. Az óriás mágneses ellenállás elvén alapuló merevlemezek működése.


Mérési feladatok

Biztonsági előírások:

  • A mérések során fokozott óvatossággal kezeljük a szupravezető mintákat, mivel drága és sérülékeny eszközök.
  • A szupravezető anyagok mérgezőek az emberi szervezet számára, így a mérés során ne együnk, valamint a mérések végén mossunk kezet. A szupravezető minták felületén speciális bevonat van, így szabad kézzel megfogva sem kerül szennyeződés a kezünkre, azonban fontos az elővigyázatosság.
  • A folyékony nitrogénnel óvatosan bánjunk, kerüljük a kontaktust a bőrrel. A folyékony nitrogénben lehűtött tárgyakhoz ne nyúljunk szabad kézzel!


Szupravezető fázisátalakulásának mérése


A szupravezető minta ellenállása a normál állapotban is nagyon kicsi, néhányszor tíz m\setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0% nagyságú. Ezért ha két pontban mérjük az ellenállását, a mért értéket a kontaktusok ellenállása fogja dominálni, ahogy a 4.a) ábrán is látszik. Ezeket az ellenállásértékeket nem ismerjük. Ha ismernénk őket, a mért értékből kivonva akkor is csak nagyon pontatlanul tudnánk meghatározni a minta tényleges ellenállását, ezért egy másik módszerrel, úgynevezett négypont ellenállásméréssel végezzük a kísérletet (4.b) ábra). Ebben az elrendezésben a műszerek által mutatott feszültség és áram értékek hányadosa ténylegesen csak a minta ellenállását fogja megadni.

Ketpont.png
Negypont.png
4. ábra. a) Ellenállás mérése két pontban. b) Ellenállás mérése négy pontban

1. Állítsuk össze az 5. ábrán látható mérési elrendezést!

Scpalca.jpg
5. ábra. Szupravezető pálca átalakulásának mérésére szolgáló elrendezés.

Az összeállítás lépései:

  • Csatlakoztassuk a mérőkártyát egy USB kábelen keresztül a számítógépre.
  • A minta négypontellenállásának mérésére szolgáló banándugók közül a V+ és V- kivezetéseket csatlakoztassuk a GW Instek digitális multiméter feszültségmérő bemeneteire. Az I+ kivezetést egy 100 \setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0%-os ellenállással sorban kössük a mérőkártya 5 V-os kimenetére. Az I- kivezetést csatlakoztassuk a mérőkártya DGND kimenetére.
  • A Pt1000-es ellenálláshőmérőt szintén négypontos elrendezésben mérjük. Feszültségmérésre a mérőkártya digitális multiméter bemenetét használjuk, az áramot a mérőkártya 5V-os kimenetéről egy 1 k\setbox0\hbox{$\Omega$}% \message{//depth:\the\dp0//}% \box0%-os ellenálláson keresztül adjuk ki.

2. Írjunk mérésvezérlő programot a szupravezető minta illetve a hőmérő ellenállásának mérésére. A hőmérő hőfoktényezője alapján számítsuk át a hőmérő ellenállását hőmérsékletté. (Megjegyzés: az adatok utólagos kiértékelése során vegyük figyelembe a platina ellenálláshőmérő karakterisztikájának nemlinearitását is!)

3. A mérésvezérlő program segítségével vegyük fel a szupravezető minta négypontellenállásának hőmérsékletfüggését úgy, hogy lassan belemártjuk a mintatartót a folyékony nitrogénbe. Miután stabilizálódott a hőmérséklet a folyékony nitrogén hőmérsékletén, lassan emeljük ki a mintatartót és az asztalra téve várjuk meg, amíg felmelegszik szobahőmérsékletre. Melegedés közben is mérjük az ellenállás hőmérsékletfüggését. A mért görbék alapján határozzuk meg a szupravezető átalakuláshoz tartozó kritikus hőmérsékletet!

  • Miért térnek el a hűléskor és a melegedéskor mért átalakulási hőmérsékletek egymástól?
  • Milyen hibái lehetnek a hőmérséklet mérésének?
  • Mekkora hibával tudjuk meghatározni a minta ellenállását? Mekkora az a legnagyobb ellenállás, amit még nullának mérünk?

Szupravezető köráram mérése

1. Állítsuk össze a mérési elrendezést az 5. ábra alapján!

Scgyuru.jpg
5. ábra Szupravezető gyűrű vizsgálatának mérési elrendezése.

Ennek menete:

  • A mérőkártyáról válasszuk le az előző mérés eszközeit.
  • A mágneses szenzor kék/barna kivezetését csatlakoztassuk a mérőkártya 5 V-os kimenetére, a kék-fehér/barna-fehér kivezetést a DGND kimenetre.
  • A szenzor zöld/narancs és zöld-fehér/narancs-fehér kivezetéseit banándugókkal csatlakoztassuk a mérőkártya multiméter bemenetére.
  • A táp kivezetéseit banánkábelekkel kössük a tekercsre. A tekercsen eső feszültség mérésére a tekercs kivezetéseit az AI 1+ és AI 1- bemenetekre is kössük rá.

2. Számoljuk ki, hogy mekkora a mágneses tér a tekercs közepén a tekercsen eső feszültség függvényében! A tekercs menetszáma és ellenállása a tekercs oldalán olvasható, a hosszát tolómérővel mérhetjük meg. A számolt mágneses tér alapján kalibráljuk a GMR szenzor feszültségjelét a mágneses tér függvényében.

3. A műanyag csipesz segítségével helyezzük a szupravezető gyűrűt az edény aljára, majd töltsünk folyékony nitrogént az edénybe. Ezután helyezzük a GMR szenzort a gyűrű közepébe, és kapcsoljunk a tekercsre körülbelül 3.5 mT mágneses térnek megfelelő feszültséget. Mit mutat a szenzor? Értelmezzük a jelenséget!

4. Vegyük ki a szenzort és a gyűrűt az edényből, az utóbbihoz használjunk a műanyag csipeszt. Várjuk meg, míg a gyűrű felmelegedik, közben öntsük vissza az edényből a folyékony nitrogént a termoszba. Ezután helyezzük vissza az üres edényt és a mintát a tekercs közepébe, majd kapcsoljunk a tekercsre ismét 3.5 mT mágneses térnek megfelelő feszültséget. Öntsünk óvatosan folyékony nitrogént az edénybe, és helyezzük vissza a mágneses szenzort. Kapcsoljuk le a tekercs által biztosított külső mágneses teret. A kikapcsolás pillanatától számítva az idő függvényében mérjük a szenzor jelét legalább 10 percen keresztül! Közben ha szükséges, pótoljuk a folyékony nitrogént. Értelmezzük a tapasztalatokat!

  • A mérés alapján adjunk felső becslést a gyűrű ellenállására!
  • Az előző feladatrészben számolt zérus ellenállás hibájával kalkulálva mennyi idő alatt csökken le a gyűrűben a mágneses tér nullára?

5. Várjuk meg míg elfogy a nitrogén, és felmelegszik a gyűrű. Közben mérjük a gyűrű közepében a teret.

Megjegyzés: ha precízebben szeretnénk elvégezni a mérést, akkor a GMR szenzort kalibrálni kell szobahőmérsékleten és alacsony hőmérsékleten is!

Függelék: A mérésen használt eszközök

  • szupravezető pálca
  • mintatartó hőmérővel
  • myDAQ mérőkártya
  • termosz
  • folyékony nitrogén
  • szupravezető gyűrű
  • hungarocell edény
  • tekercs
  • mágneses szenzor
  • műanyag csipesz
  • tápegység
  • banánkábelek
  • csavarhúzó
  • tolómérő