„Magas átmeneti hőmérsékletű szupravezető fázisátalakulásának vizsgálata” változatai közötti eltérés
(→A szupravezetésről dióhéjban) |
(→A szupravezetésről dióhéjban) |
||
(2 szerkesztő 2 közbeeső változata nincs mutatva) | |||
1. sor: | 1. sor: | ||
__NOTOC__ | __NOTOC__ | ||
+ | |||
+ | == Új mérésleírás és információ == | ||
+ | |||
+ | Az új kísérleti felállítás kapcsolási rajzokkal (egyelőre csak angolul) megtalálható [[Investigation_of_High_Temperature_Superconductors|itt]]. | ||
+ | |||
+ | A Pt1000 szenzor kalibrációs görbéjének lehet használni [http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D82:measuring-temperature-platinum-resistance-thermometers%26catid%3D60:temperature%26Itemid%3D83| itt található] képleteket. Egyszerűség kedvéért a 0 Celsius felett érvényes másodfokút lehet használni. A negatív hőmérsékleten fellépő hibát lehet közel lineárisnak tekinteni és a kritikus hőmérséklet pontos megadását ezzel a hibával korrigálva megadni, ismerve a nitrogén forrási hőmérsékletét (77K). | ||
+ | |||
+ | Az utolsó résznél 10 percig kell mérni a szupravezető gyűrűben a mágneses teret. Erre majd egy exponenciális lecsengést kell próbálni illeszteni, <wlatex>$I_0 e^{-\frac{R}{L}t}$</wlatex> alakban, ahol L a gyűrű induktivitása, t az eltelt idő és R a szupravezető ellenállása. Vegyük észre, hogy R=0 esetén a köráram konstans marad idővel, ezt kell majd a kísérletben megfigyelni. Az illesztés alapján egy 10 perces mérés után R=0-t általában 4-5 nagyságrenddel pontosabban lehet megadni, mint az előző multiméteres feladatnál. | ||
+ | |||
== A szupravezetésről dióhéjban == | == A szupravezetésről dióhéjban == | ||
<wlatex> | <wlatex> | ||
Heike Kamerlingh Onnes holland fizikus, miután megépítette hélium cseppfolyósító berendezését, elsőként végezhetett kísérleteket az abszolút nulla fokhoz igazán közeli hőmérsékleteken. Alacsony hőmérsékleti mérései rövid időn belül, 1911-ben nagyon meghökkentő felfedezéshez vezettek: azt találta, hogy egy higanyszál ellenállása 4,19 K hőmérséklet alatt zérusra csökken. Később kiderült, hogy számos anyag (pl. ólom, ón, alumínium) tökéletes vezetőként, úgynevezett szupvavezetőként viselkedik megfelelően alacsony hőmérsékleten. Kammerling Onnes munkáját már két évvel később, 1913-ban Nobel-díjjal jutalmazták. | Heike Kamerlingh Onnes holland fizikus, miután megépítette hélium cseppfolyósító berendezését, elsőként végezhetett kísérleteket az abszolút nulla fokhoz igazán közeli hőmérsékleteken. Alacsony hőmérsékleti mérései rövid időn belül, 1911-ben nagyon meghökkentő felfedezéshez vezettek: azt találta, hogy egy higanyszál ellenállása 4,19 K hőmérséklet alatt zérusra csökken. Később kiderült, hogy számos anyag (pl. ólom, ón, alumínium) tökéletes vezetőként, úgynevezett szupvavezetőként viselkedik megfelelően alacsony hőmérsékleten. Kammerling Onnes munkáját már két évvel később, 1913-ban Nobel-díjjal jutalmazták. | ||
− | A szupravezetés felfedezését követően közel fél évszázadot kellett várni a jelenség elméletének megszületésére (J. Bardeen, L. Cooper, R. | + | A szupravezetés felfedezését követően közel fél évszázadot kellett várni a jelenség elméletének megszületésére (J. Bardeen, L. Cooper, R. Schrieffer – 1957, Nobel-díj: 1972). Eszerint a szupravezető áramot szállító töltések különös tulajdonságokkal rendelkező elektron-párok, amelyek az egyszerű elektronoktól eltérő módon terjednek egy kristályban. Az ún. Cooper-párok viselkedésének kísérleti vizsgálata (Nobel-díj: 1973) vezetett a későbbiekben olyan alkalmazási lehetőségekre, mint a legérzékenyebb mágneses tér szenzor (SQUID) megalkotása, a világ leggyorsabb “hagyományos” számítógépeinek készítése, vagy a szupravezető nanoszerkezeteken alapuló kvantum-számítógépek perspektívája. |
Onnes korai felfedezése óta a szupravezetés folyamatosan a modern fizika kiemelt témái közé tartozik. Ezt jelzi, hogy szupravezetéssel kapcsolatos elméleti vagy kísérleti munkákért a fentieken kívül 1987-ben és 2003-ban is osztottak ki Nobel-díjakat. Kiemelkedő technikai jelentőségű a magashőmérsékletű szupravezetőkért odaítélt Nobel-díj (1987), hiszen ekkor vált lehetővé, hogy a folyékony héliumnál lényegesen olcsóbb folyékony nitrogen forráspontján is elérhető legyen a szupravezetés. Az ilyen új anyagok kedvező tulajdonságai révén olyan lehetőségek is ígéretessé váltak, mint szupravezető motorok vagy távvezetékek készítése. A laboratóriumi gyakorlat keretében magashőmérsékleti szupravezető anyag szupravezető fázisátalakulását vizsgáljuk. | Onnes korai felfedezése óta a szupravezetés folyamatosan a modern fizika kiemelt témái közé tartozik. Ezt jelzi, hogy szupravezetéssel kapcsolatos elméleti vagy kísérleti munkákért a fentieken kívül 1987-ben és 2003-ban is osztottak ki Nobel-díjakat. Kiemelkedő technikai jelentőségű a magashőmérsékletű szupravezetőkért odaítélt Nobel-díj (1987), hiszen ekkor vált lehetővé, hogy a folyékony héliumnál lényegesen olcsóbb folyékony nitrogen forráspontján is elérhető legyen a szupravezetés. Az ilyen új anyagok kedvező tulajdonságai révén olyan lehetőségek is ígéretessé váltak, mint szupravezető motorok vagy távvezetékek készítése. A laboratóriumi gyakorlat keretében magashőmérsékleti szupravezető anyag szupravezető fázisátalakulását vizsgáljuk. | ||
69. sor: | 78. sor: | ||
Az összeállítás lépései: | Az összeállítás lépései: | ||
* Csatlakoztassuk a mérőkártyát egy USB kábelen keresztül a számítógépre. | * Csatlakoztassuk a mérőkártyát egy USB kábelen keresztül a számítógépre. | ||
− | * A minta négypontellenállásának mérésére szolgáló banándugók közül a V+ és V- kivezetéseket csatlakoztassuk a digitális multiméter feszültségmérő bemeneteire. Az I+ kivezetést egy 100 $\Omega$-os ellenállással sorban kössük a mérőkártya 5 V-os kimenetére. Az I- kivezetést csatlakoztassuk a mérőkártya DGND kimenetére. | + | * A minta négypontellenállásának mérésére szolgáló banándugók közül a V+ és V- kivezetéseket csatlakoztassuk a GW Instek digitális multiméter feszültségmérő bemeneteire. Az I+ kivezetést egy 100 $\Omega$-os ellenállással sorban kössük a mérőkártya 5 V-os kimenetére. Az I- kivezetést csatlakoztassuk a mérőkártya DGND kimenetére. |
− | * A Pt1000-es ellenálláshőmérőt szintén négypontos elrendezésben mérjük Feszültségmérésre a mérőkártya digitális multiméter bemenetét használjuk, az áramot a mérőkártya 5V-os kimenetéről egy 1 k$\Omega$ | + | * A Pt1000-es ellenálláshőmérőt szintén négypontos elrendezésben mérjük. Feszültségmérésre a mérőkártya digitális multiméter bemenetét használjuk, az áramot a mérőkártya 5V-os kimenetéről egy 1 k$\Omega$-os ellenálláson keresztül adjuk ki. |
'''2.''' Írjunk mérésvezérlő programot a szupravezető minta illetve a hőmérő ellenállásának mérésére. A hőmérő hőfoktényezője alapján számítsuk át a hőmérő ellenállását hőmérsékletté. (Megjegyzés: az adatok utólagos kiértékelése során vegyük figyelembe a platina ellenálláshőmérő karakterisztikájának nemlinearitását is!) | '''2.''' Írjunk mérésvezérlő programot a szupravezető minta illetve a hőmérő ellenállásának mérésére. A hőmérő hőfoktényezője alapján számítsuk át a hőmérő ellenállását hőmérsékletté. (Megjegyzés: az adatok utólagos kiértékelése során vegyük figyelembe a platina ellenálláshőmérő karakterisztikájának nemlinearitását is!) | ||
− | '''3.''' A mérésvezérlő program segítségével | + | '''3.''' A mérésvezérlő program segítségével vegyük fel a szupravezető minta négypontellenállásának hőmérsékletfüggését úgy, hogy lassan belemártjuk a mintatartót a folyékony nitrogénbe. Miután stabilizálódott a hőmérséklet a folyékony nitrogén hőmérsékletén, lassan emeljük ki a mintatartót és az asztalra téve várjuk meg, amíg felmelegszik szobahőmérsékletre. Melegedés közben is mérjük az ellenállás hőmérsékletfüggését. A mért görbék alapján határozzuk meg a szupravezető átalakuláshoz tartozó kritikus hőmérsékletet! |
* ''Miért térnek el a hűléskor és a melegedéskor mért átalakulási hőmérsékletek egymástól?'' | * ''Miért térnek el a hűléskor és a melegedéskor mért átalakulási hőmérsékletek egymástól?'' | ||
* ''Milyen hibái lehetnek a hőmérséklet mérésének? '' | * ''Milyen hibái lehetnek a hőmérséklet mérésének? '' | ||
80. sor: | 89. sor: | ||
</wlatex> | </wlatex> | ||
− | === | + | === Szupravezető köráram mérése === |
− | '''1.''' | + | '''1.''' Állítsuk össze a mérési elrendezést az 5. ábra alapján! |
{| cellpadding="5" cellspacing="0" align="center" | {| cellpadding="5" cellspacing="0" align="center" | ||
|- | |- | ||
| [[Fájl:scgyuru.jpg|közép]] | | [[Fájl:scgyuru.jpg|közép]] | ||
|- | |- | ||
− | | align="center"| | + | | align="center"|5. ábra Szupravezető gyűrű vizsgálatának mérési elrendezése. |
|} | |} | ||
Ennek menete: | Ennek menete: | ||
− | * A mérőkártyáról | + | * A mérőkártyáról válasszuk le az előző mérés eszközeit. |
− | * A mágneses szenzor kék/barna kivezetését | + | * A mágneses szenzor kék/barna kivezetését csatlakoztassuk a mérőkártya 5 V-os kimenetére, a kék-fehér/barna-fehér kivezetést a DGND kimenetre. |
− | * A szenzor zöld/narancs és zöld-fehér/narancs-fehér kivezetéseit banándugókkal | + | * A szenzor zöld/narancs és zöld-fehér/narancs-fehér kivezetéseit banándugókkal csatlakoztassuk a mérőkártya multiméter bemenetére. |
− | * A táp kivezetéseit banánkábelekkel | + | * A táp kivezetéseit banánkábelekkel kössük a tekercsre. A tekercsen eső feszültség mérésére a tekercs kivezetéseit az AI 1+ és AI 1- bemenetekre is kössük rá. |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | ''' | + | '''2.''' Számoljuk ki, hogy mekkora a mágneses tér a tekercs közepén a tekercsen eső feszültség függvényében! A tekercs menetszáma és ellenállása a tekercs oldalán olvasható, a hosszát tolómérővel mérhetjük meg. A számolt mágneses tér alapján kalibráljuk a GMR szenzor feszültségjelét a mágneses tér függvényében. |
− | + | ||
− | ''' | + | '''3.''' A műanyag csipesz segítségével helyezzük a szupravezető gyűrűt az edény aljára, majd töltsünk folyékony nitrogént az edénybe. Ezután helyezzük a GMR szenzort a gyűrű közepébe, és kapcsoljunk a tekercsre körülbelül 3.5 mT mágneses térnek megfelelő feszültséget. Mit mutat a szenzor? Értelmezzük a jelenséget! |
− | + | '''4.''' Vegyük ki a szenzort és a gyűrűt az edényből, az utóbbihoz használjunk a műanyag csipeszt. Várjuk meg, míg a gyűrű felmelegedik, közben öntsük vissza az edényből a folyékony nitrogént a termoszba. Ezután helyezzük vissza az üres edényt és a mintát a tekercs közepébe, majd kapcsoljunk a tekercsre ismét 3.5 mT mágneses térnek megfelelő feszültséget. Öntsünk óvatosan folyékony nitrogént az edénybe, és helyezzük vissza a mágneses szenzort. Kapcsoljuk le a tekercs által biztosított külső mágneses teret. A kikapcsolás pillanatától számítva az idő függvényében mérjük a szenzor jelét legalább 10 percen keresztül! Közben ha szükséges, pótoljuk a folyékony nitrogént. Értelmezzük a tapasztalatokat! | |
− | * ''A mérés alapján | + | * ''A mérés alapján adjunk felső becslést a gyűrű ellenállására!'' |
* ''Az előző feladatrészben számolt zérus ellenállás hibájával kalkulálva mennyi idő alatt csökken le a gyűrűben a mágneses tér nullára?'' | * ''Az előző feladatrészben számolt zérus ellenállás hibájával kalkulálva mennyi idő alatt csökken le a gyűrűben a mágneses tér nullára?'' | ||
− | '''5.''' | + | '''5.''' Várjuk meg míg elfogy a nitrogén, és felmelegszik a gyűrű. Közben mérjük a gyűrű közepében a teret. |
− | Megjegyzés: ha precízebben szeretnénk elvégezni a mérést, akkor a GMR szenzort kalibrálni kell szobahőmérsékleten és alacsony hőmérsékleten is | + | Megjegyzés: ha precízebben szeretnénk elvégezni a mérést, akkor a GMR szenzort kalibrálni kell szobahőmérsékleten és alacsony hőmérsékleten is! |
== Függelék: A mérésen használt eszközök== | == Függelék: A mérésen használt eszközök== |
A lap jelenlegi, 2019. április 30., 14:19-kori változata
Új mérésleírás és információ
Az új kísérleti felállítás kapcsolási rajzokkal (egyelőre csak angolul) megtalálható itt.
A Pt1000 szenzor kalibrációs görbéjének lehet használni itt található képleteket. Egyszerűség kedvéért a 0 Celsius felett érvényes másodfokút lehet használni. A negatív hőmérsékleten fellépő hibát lehet közel lineárisnak tekinteni és a kritikus hőmérséklet pontos megadását ezzel a hibával korrigálva megadni, ismerve a nitrogén forrási hőmérsékletét (77K).
Az utolsó résznél 10 percig kell mérni a szupravezető gyűrűben a mágneses teret. Erre majd egy exponenciális lecsengést kell próbálni illeszteni, alakban, ahol L a gyűrű induktivitása, t az eltelt idő és R a szupravezető ellenállása. Vegyük észre, hogy R=0 esetén a köráram konstans marad idővel, ezt kell majd a kísérletben megfigyelni. Az illesztés alapján egy 10 perces mérés után R=0-t általában 4-5 nagyságrenddel pontosabban lehet megadni, mint az előző multiméteres feladatnál.
A szupravezetésről dióhéjban
Heike Kamerlingh Onnes holland fizikus, miután megépítette hélium cseppfolyósító berendezését, elsőként végezhetett kísérleteket az abszolút nulla fokhoz igazán közeli hőmérsékleteken. Alacsony hőmérsékleti mérései rövid időn belül, 1911-ben nagyon meghökkentő felfedezéshez vezettek: azt találta, hogy egy higanyszál ellenállása 4,19 K hőmérséklet alatt zérusra csökken. Később kiderült, hogy számos anyag (pl. ólom, ón, alumínium) tökéletes vezetőként, úgynevezett szupvavezetőként viselkedik megfelelően alacsony hőmérsékleten. Kammerling Onnes munkáját már két évvel később, 1913-ban Nobel-díjjal jutalmazták.
A szupravezetés felfedezését követően közel fél évszázadot kellett várni a jelenség elméletének megszületésére (J. Bardeen, L. Cooper, R. Schrieffer – 1957, Nobel-díj: 1972). Eszerint a szupravezető áramot szállító töltések különös tulajdonságokkal rendelkező elektron-párok, amelyek az egyszerű elektronoktól eltérő módon terjednek egy kristályban. Az ún. Cooper-párok viselkedésének kísérleti vizsgálata (Nobel-díj: 1973) vezetett a későbbiekben olyan alkalmazási lehetőségekre, mint a legérzékenyebb mágneses tér szenzor (SQUID) megalkotása, a világ leggyorsabb “hagyományos” számítógépeinek készítése, vagy a szupravezető nanoszerkezeteken alapuló kvantum-számítógépek perspektívája.
Onnes korai felfedezése óta a szupravezetés folyamatosan a modern fizika kiemelt témái közé tartozik. Ezt jelzi, hogy szupravezetéssel kapcsolatos elméleti vagy kísérleti munkákért a fentieken kívül 1987-ben és 2003-ban is osztottak ki Nobel-díjakat. Kiemelkedő technikai jelentőségű a magashőmérsékletű szupravezetőkért odaítélt Nobel-díj (1987), hiszen ekkor vált lehetővé, hogy a folyékony héliumnál lényegesen olcsóbb folyékony nitrogen forráspontján is elérhető legyen a szupravezetés. Az ilyen új anyagok kedvező tulajdonságai révén olyan lehetőségek is ígéretessé váltak, mint szupravezető motorok vagy távvezetékek készítése. A laboratóriumi gyakorlat keretében magashőmérsékleti szupravezető anyag szupravezető fázisátalakulását vizsgáljuk.
A szupravezetés másik kísérő jelensége az 1933-ban felfedezett ún. Meissner-effektus. Meissner és Ochsenfeld megmutatták, hogy egy kritikus érték alatt a mágneses tér nem tud behatolni a szupravezetők belsejébe, valamint a véges mágneses térben lehűtött és szupravezetővé vált anyagok az átalakulási hőmérsékletük alá hűtve kiszorítják magukból a mágneses teret. Míg az előbbi tulajdonság önmagában megmagyarázható az időben változó külső mágneses tér által keltett, és a szupravezetők nulla elektromos ellenállása miatt nem csillapodó köráramok következtében fellépő kompenzáló mágneses térrel, az utóbbi jelenség túlmutat a klasszikus elektromosságtan keretein.
A szupravezető állapotban tapasztalt nulla elektromos ellenállás lehetővé teszi, hogy egy szupravezető tekercsbe áramot vezetve, majd a tápegységet kiiktatva és a tekercs végeit rövidre zárva a tekercsben keringő, akár 100 Amperes nagyságú, időben nem csillapodó áramokkal több Tesla nagyságú mágneses tereket tartsunk fenn további külső meghajtás nélkül. Napjainkban ezt az elvet használják ki a mágnesesen lebegtetett vonatok, az orvosi MRI készülékek vagy a CERN részecskegyorsító szupravezető mágneseiben. A laboratóriumi gyakorlat keretében egy egyszerűsített elrendezésben vizsgáljuk a csillapítatlan köráramot. Egy szupravezető gyűrű belsejében nem változhat a mágneses fluxus, hiszen a fluxusváltozás hatására feszültség indukálódna, de a zérus ellenállás miatt nem eshet feszültség a szupravezetőben. Ennek megfelelően mágneses térben lehűtött szupravezető gyűrű belsejében a külső tér lekapcsolása után is bent marad, “befagy” a mágneses fluxus, amit a külső tér kikapcsolása után a gyűrűben folyó, csillapítatlan szupravezető köráram tart fenn.
Mágneses tér mérése GMR szenzorral
A szupravezető gyűrű belsejében felépülő vagy onnan kiszoruló mágneses teret a merevlemezek olvasófejeiben is alkalmazott mágneses tér érzékelő szenzorral mérhetjük. Az ilyen, ún. óriás mágneses ellenállást (GMR) mutató nanoszerkezetek felfedezése (1988) Albert Fert és Peter Grünberg nevéhez kötődik, akik 2007-ben Nobel-díjat kaptak felfedezésükért. A szerkezet két ferromágneses rétegből áll, amelyeket egy vékony nemmágneses réteg választ el egymástól (lásd 1. ábra, alsó panel). A felhasznált anyagok és a nemmágneses réteg vastagságának megfelelő megválasztásával elérhető, hogy külső mágneses tér hiányában a két réteg mágnesezettsége egymással ellentétes irányú legyen. Erre az elrendezésre megfelelő nagyságú külső mágneses teret kapcsolva a két réteg mágnesezettségét beforgathatjuk egymással párhuzamos irányba. A mágnesezettség párhuzamos (parallel, P) állása esetén a rétegszerkezet ellenállása lényegesen kisebb, mint az ellentétes (antiparallel, AP) beállás esetén, így külső mágneses tér alkalmazásával jelentős ellenállás-csökkenést tudunk elérni. Ezt a jelenséget hívjuk óriás mágneses ellenállásnak.
1. ábra. Az óriás mágneses ellenállás szemléltetése. |
A jelenséget hátterében az áll, hogy az elektromos vezetési tulajdonságok függnek attól, hogy az elektronok spinje (illetve mágneses momentuma) milyen irányban áll a ferromágneses réteg mágnesezettségéhez képest. Az elrendezés valamelyest hasonlít az optikai polárszűrőkhöz: keresztezett polárszűrőkön kevés, míg azonos állású polárszűrőkön sok fény halad át. Fontos azonban megjegyezni, hogy a GMR jelenség csak nanoszerkezetekben jelentkezik, ha a két mágneses réteget lényegesen vastagabb nemmágneses réteg választja el, akkor az elektronok mire a második rétegbe jutnak, különböző kölcsönhatási mechanizmusoknak köszönhetően már elfelejtik, hogy milyen mágnesezettségi irányú rétegből jönnek, így az ellenállás nem függ a két réteg mágnesezettségének irányától. Optikában ez annak feleltethető meg, mint ha a két polárszűrő közé egy olyan diffúz közeget helyeznénk, mely véletlenszerűen elforgatja a polarizációt.
Az elektronikai iparban a mágneses ellenálláson alapuló technológiák első és máig is legjelentősebb felhasználása a merevlemezek olvasófejéhez kapcsolódik. Ezekben az 1990-es évek elején induktív olvasófejeket alkalmaztak: a merevlemezeken mágnesesen tárolt információ kiolvasását a gyorsan forgó mágneses lemez által egy kis tekercsben indukált feszültség segítségével végezték. Az 1990-es évek közepén áttérve a magnetorezisztív technológiára először az anizotróp mágneses ellenálláson (AMR) alapuló olvasófejek terjedtek el. Az AMR fejeknek köszönhetően jelentős tárolókapacitás-növekedést sikerült elérni, azonban az AMR jelenség kis, <1 százalékos ellenállás-változása a későbbiekben komoly korlátozó tényezővé vált. A GMR jelensége ezt az értéket egy nagyságrenddel meghaladja, így az 1990-es évek vége óta a merevlemezekben a GMR jelenségén alapuló olvasófejeket használnak. Ezzel a módszerrel a merevlemezek tárolókapacitásának további jelentős növekedését lehetett elérni.
A GMR olvasófejek az ún. spin-szelep elrendezést követik. A két mágneses rétegből az egyik rögzített, nehezen elfordítható irányú mágnesezettséggel rendelkezik, míg a másik egy könnyen forgatható mágnesezettségű réteg (2. ábra). Az utóbbi réteg mágnesezettsége az olvasófej alatt forgó merevlemezen tárolt bitek mágnesezési irányának megfelelően áll be, így az információ a spinszelep ellenállásának mérésével egyszerűen kiolvasható.
2. ábra. Az óriás mágneses ellenállás elvén alapuló merevlemezek működése. |
Mérési feladatok
Biztonsági előírások:
- A mérések során fokozott óvatossággal kezeljük a szupravezető mintákat, mivel drága és sérülékeny eszközök.
- A szupravezető anyagok mérgezőek az emberi szervezet számára, így a mérés során ne együnk, valamint a mérések végén mossunk kezet. A szupravezető minták felületén speciális bevonat van, így szabad kézzel megfogva sem kerül szennyeződés a kezünkre, azonban fontos az elővigyázatosság.
- A folyékony nitrogénnel óvatosan bánjunk, kerüljük a kontaktust a bőrrel. A folyékony nitrogénben lehűtött tárgyakhoz ne nyúljunk szabad kézzel!
Szupravezető fázisátalakulásának mérése
A szupravezető minta ellenállása a normál állapotban is nagyon kicsi, néhányszor tíz m nagyságú. Ezért ha két pontban mérjük az ellenállását, a mért értéket a kontaktusok ellenállása fogja dominálni, ahogy a 4.a) ábrán is látszik. Ezeket az ellenállásértékeket nem ismerjük. Ha ismernénk őket, a mért értékből kivonva akkor is csak nagyon pontatlanul tudnánk meghatározni a minta tényleges ellenállását,
ezért egy másik módszerrel, úgynevezett négypont ellenállásméréssel végezzük a kísérletet (4.b) ábra). Ebben az elrendezésben a műszerek által mutatott feszültség és áram értékek hányadosa ténylegesen csak a minta ellenállását fogja megadni.
4. ábra. a) Ellenállás mérése két pontban. b) Ellenállás mérése négy pontban |
1. Állítsuk össze az 5. ábrán látható mérési elrendezést!
5. ábra. Szupravezető pálca átalakulásának mérésére szolgáló elrendezés. |
Az összeállítás lépései:
- Csatlakoztassuk a mérőkártyát egy USB kábelen keresztül a számítógépre.
- A minta négypontellenállásának mérésére szolgáló banándugók közül a V+ és V- kivezetéseket csatlakoztassuk a GW Instek digitális multiméter feszültségmérő bemeneteire. Az I+ kivezetést egy 100 -os ellenállással sorban kössük a mérőkártya 5 V-os kimenetére. Az I- kivezetést csatlakoztassuk a mérőkártya DGND kimenetére.
- A Pt1000-es ellenálláshőmérőt szintén négypontos elrendezésben mérjük. Feszültségmérésre a mérőkártya digitális multiméter bemenetét használjuk, az áramot a mérőkártya 5V-os kimenetéről egy 1 k-os ellenálláson keresztül adjuk ki.
2. Írjunk mérésvezérlő programot a szupravezető minta illetve a hőmérő ellenállásának mérésére. A hőmérő hőfoktényezője alapján számítsuk át a hőmérő ellenállását hőmérsékletté. (Megjegyzés: az adatok utólagos kiértékelése során vegyük figyelembe a platina ellenálláshőmérő karakterisztikájának nemlinearitását is!)
3. A mérésvezérlő program segítségével vegyük fel a szupravezető minta négypontellenállásának hőmérsékletfüggését úgy, hogy lassan belemártjuk a mintatartót a folyékony nitrogénbe. Miután stabilizálódott a hőmérséklet a folyékony nitrogén hőmérsékletén, lassan emeljük ki a mintatartót és az asztalra téve várjuk meg, amíg felmelegszik szobahőmérsékletre. Melegedés közben is mérjük az ellenállás hőmérsékletfüggését. A mért görbék alapján határozzuk meg a szupravezető átalakuláshoz tartozó kritikus hőmérsékletet!
- Miért térnek el a hűléskor és a melegedéskor mért átalakulási hőmérsékletek egymástól?
- Milyen hibái lehetnek a hőmérséklet mérésének?
- Mekkora hibával tudjuk meghatározni a minta ellenállását? Mekkora az a legnagyobb ellenállás, amit még nullának mérünk?
Szupravezető köráram mérése
1. Állítsuk össze a mérési elrendezést az 5. ábra alapján!
5. ábra Szupravezető gyűrű vizsgálatának mérési elrendezése. |
Ennek menete:
- A mérőkártyáról válasszuk le az előző mérés eszközeit.
- A mágneses szenzor kék/barna kivezetését csatlakoztassuk a mérőkártya 5 V-os kimenetére, a kék-fehér/barna-fehér kivezetést a DGND kimenetre.
- A szenzor zöld/narancs és zöld-fehér/narancs-fehér kivezetéseit banándugókkal csatlakoztassuk a mérőkártya multiméter bemenetére.
- A táp kivezetéseit banánkábelekkel kössük a tekercsre. A tekercsen eső feszültség mérésére a tekercs kivezetéseit az AI 1+ és AI 1- bemenetekre is kössük rá.
2. Számoljuk ki, hogy mekkora a mágneses tér a tekercs közepén a tekercsen eső feszültség függvényében! A tekercs menetszáma és ellenállása a tekercs oldalán olvasható, a hosszát tolómérővel mérhetjük meg. A számolt mágneses tér alapján kalibráljuk a GMR szenzor feszültségjelét a mágneses tér függvényében.
3. A műanyag csipesz segítségével helyezzük a szupravezető gyűrűt az edény aljára, majd töltsünk folyékony nitrogént az edénybe. Ezután helyezzük a GMR szenzort a gyűrű közepébe, és kapcsoljunk a tekercsre körülbelül 3.5 mT mágneses térnek megfelelő feszültséget. Mit mutat a szenzor? Értelmezzük a jelenséget!
4. Vegyük ki a szenzort és a gyűrűt az edényből, az utóbbihoz használjunk a műanyag csipeszt. Várjuk meg, míg a gyűrű felmelegedik, közben öntsük vissza az edényből a folyékony nitrogént a termoszba. Ezután helyezzük vissza az üres edényt és a mintát a tekercs közepébe, majd kapcsoljunk a tekercsre ismét 3.5 mT mágneses térnek megfelelő feszültséget. Öntsünk óvatosan folyékony nitrogént az edénybe, és helyezzük vissza a mágneses szenzort. Kapcsoljuk le a tekercs által biztosított külső mágneses teret. A kikapcsolás pillanatától számítva az idő függvényében mérjük a szenzor jelét legalább 10 percen keresztül! Közben ha szükséges, pótoljuk a folyékony nitrogént. Értelmezzük a tapasztalatokat!
- A mérés alapján adjunk felső becslést a gyűrű ellenállására!
- Az előző feladatrészben számolt zérus ellenállás hibájával kalkulálva mennyi idő alatt csökken le a gyűrűben a mágneses tér nullára?
5. Várjuk meg míg elfogy a nitrogén, és felmelegszik a gyűrű. Közben mérjük a gyűrű közepében a teret.
Megjegyzés: ha precízebben szeretnénk elvégezni a mérést, akkor a GMR szenzort kalibrálni kell szobahőmérsékleten és alacsony hőmérsékleten is!
Függelék: A mérésen használt eszközök
- szupravezető pálca
- mintatartó hőmérővel
- myDAQ mérőkártya
- termosz
- folyékony nitrogén
- szupravezető gyűrű
- hungarocell edény
- tekercs
- mágneses szenzor
- műanyag csipesz
- tápegység
- banánkábelek
- csavarhúzó
- tolómérő