„3. Mérés: RC-körök vizsgálata” változatai közötti eltérés
89. sor: | 89. sor: | ||
==Mérési feladatok== | ==Mérési feladatok== | ||
− | '''1. Feladat''' A próbapanelen állítsunk össze egy $R$=10 k$\Omega$ ellenállásból és az ismeretlen $C$ kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. $ | + | '''1. Feladat''' A próbapanelen állítsunk össze egy $R$=10 k$\Omega$ ellenállásból és az ismeretlen $C$ kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. $U_{be}$ bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre $f$=1 kHz frekvenciájú, $V_{pp}$=1 V-os szinusz jelet. A bemeneti és a kondenzátoron eső $U_{ki}$ kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert. |
Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen $C$ kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek? | Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen $C$ kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek? |
A lap 2019. november 1., 23:49-kori változata
Tartalomjegyzék[elrejtés] |
Elméleti összefoglaló
Időben harmonikusan változó jel
Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [1]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy ![]() ![]() ![]() ![]() ![]() ![]() Hasznos még bevezetni a körfrekvenciát ![]() A harmonikusan változó feszültség a komplex síkon egy |
Lineáris áramköri elemek
Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső fezsültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás:
![]() Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg ![]() melyből kiszámíthatjuk a rajta eső feszültsége: ![]() Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a |
Egy ![]() ![]() Az időben harmonikusan változó áramot ismét komplex alakban adjuk meg ![]() melyből a tekercs kapcsain mérhető feszültség: ![]() Tehát a feszültség fázisa |
A ![]() ![]() Ezt az összefüggést deriválva és átrendezve a korábbiakhoz hasonló alakú kifejezést kapunk: ![]() hiszen a kondenzátor eltolási árama a töltésváltozással egyenlő. A komplex feszültség-áram összefüggés az alábbi alakot ölti: ![]() Tehát a feszültség fázisa - |
Mérési feladatok
1. Feladat A próbapanelen állítsunk össze egy =10 k
ellenállásból és az ismeretlen
kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást.
bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre
=1 kHz frekvenciájú,
=1 V-os szinusz jelet. A bemeneti és a kondenzátoron eső
kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert.
Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek?
2. Feladat Vizsgáljuk tovább a fenti áramkört! A bemeneti pontokra =100 Hz frekvenciájú négyszögjelet kapcsoljunk. Az oszcilloszkóp beállítása után, mentsük el a kimeneti jelet. A kisülési görbékre exponenciális függvényt illesztve határozzuk meg az időállandót, majd számítsuk ki a
kapacitás értékét ezzel a módszerrel is.