„3. Mérés: RC-körök vizsgálata” változatai közötti eltérés
62. sor: | 62. sor: | ||
$$ Ue^{i\omega t}=i\omega LI_0e^{i\omega t}. $$ | $$ Ue^{i\omega t}=i\omega LI_0e^{i\omega t}. $$ | ||
− | Tehát a feszültség fázisa $\frac{\pi}{2}$-vel eltolódik az áramhoz képest, az amplitúdokat pedig a $U_0$=$\omega LI_0$ összefüggéssel számolhatjuk ki. Érdemes bevezetni az ellenálláshoz hasonló fogalmat, az impedanciát. Ez a komplex mennyiség lineáris áramkörökben megadja a feszülség és az áram komplex arányát. Induktivitás esetén $Z_L$=$\omega L$. | + | Tehát a feszültség fázisa $\frac{\pi}{2}$-vel eltolódik az áramhoz képest, az amplitúdokat pedig a $U_0$=$\omega LI_0$ összefüggéssel számolhatjuk ki. Érdemes bevezetni az ellenálláshoz hasonló fogalmat, az impedanciát. Ez a komplex mennyiség lineáris áramkörökben megadja a feszülség és az áram komplex arányát. Induktivitás esetén $Z_L$=$i\omega L$. |
| [[File:ZL.jpg|400px|thumb|right|Általános időben harmonikusan változó feszültség]] | | [[File:ZL.jpg|400px|thumb|right|Általános időben harmonikusan változó feszültség]] | ||
81. sor: | 81. sor: | ||
$$ Ue^{i\omega t}=\frac{1}{i\omega C}I_0e^{i\omega t}. $$ | $$ Ue^{i\omega t}=\frac{1}{i\omega C}I_0e^{i\omega t}. $$ | ||
− | Tehát a feszültség fázisa -$\frac{\pi}{2}$-vel eltolódik az áramhoz képest, az amplitúdokat pedig a $U_0$=$\frac{I_0}{\omega C}$ összefüggéssel számolhatjuk ki. A kondenzátorhoz tartozó impedancia $Z_C$=$\frac{1}{\omega C}$. | + | Tehát a feszültség fázisa -$\frac{\pi}{2}$-vel eltolódik az áramhoz képest, az amplitúdokat pedig a $U_0$=$\frac{I_0}{\omega C}$ összefüggéssel számolhatjuk ki. A kondenzátorhoz tartozó impedancia $Z_C$=$\frac{1}{i\omega C}$. |
| [[File:ZC.jpg|400px|thumb|right|Általános időben harmonikusan változó feszültség]] | | [[File:ZC.jpg|400px|thumb|right|Általános időben harmonikusan változó feszültség]] | ||
|} | |} | ||
+ | ===Soros RC kör=== | ||
+ | |||
+ | {| | ||
+ | |- | ||
+ | | Az ábrán látható soros RC körrel vizsgálhatjuk egy $C$ kapacitású kondenzátor feltöltődését és kisülését. Ha hosszú időn keresztül a véges feszültséget kapcsolunk a körre a kondenzátor feltöltődik. Ezt követően, t=0 időpillanatban a kapcsolót átkapcsolva rövidre zárjuk az áramkört, azaz a bemeneti pontok azonos feszültségre kerülnek: | ||
+ | |||
+ | $$ U_R+U_C=0 $$ | ||
+ | |||
+ | Ekkor a kondenzátor fegyverzetein tárolt töltések átáramlanak az ellentétes fegyverzetre, hogy az új egyensúly elérését követően nulla feszültség essen a bemeneten (és a kondenzátoron is). Ezt az áramot például a fenti egyenlet deriválásával számíthatjuk ki: | ||
+ | |||
+ | $$ \frac{dU_R}{dt}+\frac{dU_C}{dt}=R\frac{dI}{dt}+\frac{I}{C}=0 $$ | ||
+ | |||
+ | Tehát az áramkörben folyó időfüggő áram az alábbi differenciál egyenletet elégíti ki: | ||
+ | |||
+ | $$ \frac{dI}{dt}=-\frac{I}{RC} $$ | ||
+ | |||
+ | Az $RC$ szorzat láthatóan idő dimenziójú, érdemes bevezetni a $\tau$=$RC$ időállandót. Az exponenciális függvénykielégíti | ||
+ | |||
+ | | [[File:RC_switch.jpg|400px|thumb|right|Általános időben harmonikusan változó feszültség]] | ||
+ | |} | ||
==Mérési feladatok== | ==Mérési feladatok== |
A lap 2019. november 2., 08:55-kori változata
Tartalomjegyzék |
Elméleti összefoglaló
Időben harmonikusan változó jel
Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [1]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy periodus idővel változó, =1/ frekvenciájú feszültség jel látható. Ha a jel amplitúdója és fázisa , az időfüggést az alábbi alakban adhatjuk meg:
Hasznos még bevezetni a körfrekvenciát =2. Az időbeli változást leíró differenciál egyenletek könnyebb kezeléséhez érdemes bevezetni az alábbi komplex változót, melynek valós része adja a mérhető jelet: A harmonikusan változó feszültség a komplex síkon egy sugarú kört ír le. A komplex számot reprezentáló vektor fázisszöge állandó szögsebességgel fordul körbe. |
Lineáris áramköri elemek
Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső fezsültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás:
Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg melyből kiszámíthatjuk a rajta eső feszültsége: Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a = összefüggéssel számolhatjuk ki. |
Egy induktivitással jellemezhető tekercs esetén a tekercs kapocsain mérhető feszültséget az alábbi képlet adja meg:
Az időben harmonikusan változó áramot ismét komplex alakban adjuk meg melyből a tekercs kapcsain mérhető feszültség: Tehát a feszültség fázisa -vel eltolódik az áramhoz képest, az amplitúdokat pedig a = összefüggéssel számolhatjuk ki. Érdemes bevezetni az ellenálláshoz hasonló fogalmat, az impedanciát. Ez a komplex mennyiség lineáris áramkörökben megadja a feszülség és az áram komplex arányát. Induktivitás esetén =. |
A kapacitással jellemezhető kondenzátor esetén ismert, hogy
Ezt az összefüggést deriválva és átrendezve a korábbiakhoz hasonló alakú kifejezést kapunk: hiszen a kondenzátor eltolási árama a töltésváltozással egyenlő. A komplex feszültség-áram összefüggés az alábbi alakot ölti: Tehát a feszültség fázisa --vel eltolódik az áramhoz képest, az amplitúdokat pedig a = összefüggéssel számolhatjuk ki. A kondenzátorhoz tartozó impedancia =. |
Soros RC kör
Az ábrán látható soros RC körrel vizsgálhatjuk egy kapacitású kondenzátor feltöltődését és kisülését. Ha hosszú időn keresztül a véges feszültséget kapcsolunk a körre a kondenzátor feltöltődik. Ezt követően, t=0 időpillanatban a kapcsolót átkapcsolva rövidre zárjuk az áramkört, azaz a bemeneti pontok azonos feszültségre kerülnek:
Ekkor a kondenzátor fegyverzetein tárolt töltések átáramlanak az ellentétes fegyverzetre, hogy az új egyensúly elérését követően nulla feszültség essen a bemeneten (és a kondenzátoron is). Ezt az áramot például a fenti egyenlet deriválásával számíthatjuk ki: Tehát az áramkörben folyó időfüggő áram az alábbi differenciál egyenletet elégíti ki: Az szorzat láthatóan idő dimenziójú, érdemes bevezetni a = időállandót. Az exponenciális függvénykielégíti |
Mérési feladatok
1. Feladat A próbapanelen állítsunk össze egy =10 k ellenállásból és az ismeretlen kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre =1 kHz frekvenciájú, =1 V-os szinusz jelet. A bemeneti és a kondenzátoron eső kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert.
Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek?
2. Feladat Vizsgáljuk tovább a fenti áramkört! A bemeneti pontokra =100 Hz frekvenciájú négyszögjelet kapcsoljunk. Az oszcilloszkóp beállítása után, mentsük el a kimeneti jelet. A kisülési görbékre exponenciális függvényt illesztve határozzuk meg az időállandót, majd számítsuk ki a kapacitás értékét ezzel a módszerrel is.