„3. Mérés: RC-körök vizsgálata” változatai közötti eltérés
a |
a |
||
52. sor: | 52. sor: | ||
| Egy $L$ induktivitással jellemezhető tekercs esetén a tekercs kapocsain mérhető feszültséget az alábbi képlet adja meg: | | Egy $L$ induktivitással jellemezhető tekercs esetén a tekercs kapocsain mérhető feszültséget az alábbi képlet adja meg: | ||
− | $$ U=L\frac{dI}{dt} $$ | + | $$ U=L\frac{dI}{dt}. $$ |
Az időben harmonikusan változó áramot ismét komplex alakban adjuk meg | Az időben harmonikusan változó áramot ismét komplex alakban adjuk meg | ||
92. sor: | 92. sor: | ||
| Az ábrán látható soros RC körrel vizsgálhatjuk egy $C$ kapacitású kondenzátor feltöltődését és kisülését. Ha hosszú időn keresztül véges $U$ feszültséget kapcsolunk a körre a kondenzátor feltöltődik. Ezt követően, t=0 időpillanatban a kapcsolót átkapcsolva rövidre zárjuk az áramkört, azaz a bemeneti pontok azonos feszültségre kerülnek: | | Az ábrán látható soros RC körrel vizsgálhatjuk egy $C$ kapacitású kondenzátor feltöltődését és kisülését. Ha hosszú időn keresztül véges $U$ feszültséget kapcsolunk a körre a kondenzátor feltöltődik. Ezt követően, t=0 időpillanatban a kapcsolót átkapcsolva rövidre zárjuk az áramkört, azaz a bemeneti pontok azonos feszültségre kerülnek: | ||
− | $$ U_R+U_C=0 $$ | + | $$ U_R+U_C=0. $$ |
Ekkor a kondenzátor fegyverzetein tárolt töltések átáramlanak az ellentétes fegyverzetre, hogy az új egyensúly elérését követően nulla feszültség essen a bemeneten (és a kondenzátoron is). Ezt az áramot például a fenti egyenlet deriválásával számíthatjuk ki: | Ekkor a kondenzátor fegyverzetein tárolt töltések átáramlanak az ellentétes fegyverzetre, hogy az új egyensúly elérését követően nulla feszültség essen a bemeneten (és a kondenzátoron is). Ezt az áramot például a fenti egyenlet deriválásával számíthatjuk ki: | ||
− | $$ \frac{dU_R}{dt}+\frac{dU_C}{dt}=R\frac{dI}{dt}+\frac{I}{C}=0 $$ | + | $$ \frac{dU_R}{dt}+\frac{dU_C}{dt}=R\frac{dI}{dt}+\frac{I}{C}=0. $$ |
Tehát az áramkörben folyó időfüggő áram az alábbi differenciálegyenletet elégíti ki: | Tehát az áramkörben folyó időfüggő áram az alábbi differenciálegyenletet elégíti ki: | ||
− | $$ \frac{dI}{dt}=-\frac{I}{RC} $$ | + | $$ \frac{dI}{dt}=-\frac{I}{RC}. $$ |
Az $RC$ szorzat láthatóan idő dimenziójú, érdemes bevezetni a $\tau$=$RC$ időállandót. Az exponenciális függvény kielégíti a fenti egyenletet, hiszen deriváltja szintén exponenciális: | Az $RC$ szorzat láthatóan idő dimenziójú, érdemes bevezetni a $\tau$=$RC$ időállandót. Az exponenciális függvény kielégíti a fenti egyenletet, hiszen deriváltja szintén exponenciális: | ||
117. sor: | 117. sor: | ||
| Megvizsgálhatjuk a soros RC kör harmonikus meghajtásra adott válaszát is. Például a meghajtó $U_{be}$ feszültség $U_{ki}$=$U_C$ kondenzátor feszültségre gyakorolt hatását. Az eszközökön eső feszültség a meghajtó feszültséggel lesz egyenlő: | | Megvizsgálhatjuk a soros RC kör harmonikus meghajtásra adott válaszát is. Például a meghajtó $U_{be}$ feszültség $U_{ki}$=$U_C$ kondenzátor feszültségre gyakorolt hatását. Az eszközökön eső feszültség a meghajtó feszültséggel lesz egyenlő: | ||
− | $$ U_R+U_C=U_{be} $$ | + | $$ U_R+U_C=U_{be}. $$ |
Az impedanciáról tanultakat felhasználva | Az impedanciáról tanultakat felhasználva | ||
− | $$ U_{be}=RI+Z_CI $$ | + | $$ U_{be}=RI+Z_CI, $$ |
− | $$ U_{ki}=Z_CI=\frac{Z_C}{R+Z_C}U_{be}=\frac{1}{i\omega RC+1}U_{be}=\frac{1}{i\omega\tau+1}U_{be}$$ | + | $$ U_{ki}=Z_CI=\frac{Z_C}{R+Z_C}U_{be}=\frac{1}{i\omega RC+1}U_{be}=\frac{1}{i\omega\tau+1}U_{be}. $$ |
| [[File:RC.png|250px|thumb|right|Soros RC kör]] | | [[File:RC.png|250px|thumb|right|Soros RC kör]] | ||
131. sor: | 131. sor: | ||
| Az amplitúdók arányát és a fáziskülönbséget az alábbi arány számításával határozhatjuk meg: | | Az amplitúdók arányát és a fáziskülönbséget az alábbi arány számításával határozhatjuk meg: | ||
− | $$ \frac{U_{ki}}{U_{be}}=\frac{\vert U_{ki}\vert}{\vert U_{be}\vert} e^{\varphi_{ki}-\varphi_{be}} $$ | + | $$ \frac{U_{ki}}{U_{be}}=\frac{\vert U_{ki}\vert}{\vert U_{be}\vert} e^{\varphi_{ki}-\varphi_{be}}. $$ |
Az amplitúdóarányt az alábbi Lorentz görbe adja meg: | Az amplitúdóarányt az alábbi Lorentz görbe adja meg: | ||
− | $$ \frac{\vert U_{ki}\vert^2}{\vert U_{be}\vert^2}=\frac{1}{1+(\omega\tau)^2} $$ | + | $$ \frac{\vert U_{ki}\vert^2}{\vert U_{be}\vert^2}=\frac{1}{1+(\omega\tau)^2}. $$ |
Tehát 1/$\tau$ körfrekvencia alatt a feszültség nagyrészt a kapacitáson esik, míg nagyobb frekvenciákon az impedanciája és a rajta eső feszültség is lecsökken. A fáziskülönbséghez a komplex szám fázisát kell meghatározni: | Tehát 1/$\tau$ körfrekvencia alatt a feszültség nagyrészt a kapacitáson esik, míg nagyobb frekvenciákon az impedanciája és a rajta eső feszültség is lecsökken. A fáziskülönbséghez a komplex szám fázisát kell meghatározni: | ||
143. sor: | 143. sor: | ||
A fázisszöget a képzetes és valós rész hányadosa adja meg: | A fázisszöget a képzetes és valós rész hányadosa adja meg: | ||
− | $$ tg(\varphi)=-\omega\tau $$ | + | $$ tg(\varphi)=-\omega\tau. $$ |
| [[File:RC_trans.jpg|250px|thumb|right|Amplitúdóarány és fáziskülönbség frekvencia függése soros RC körben.]] | | [[File:RC_trans.jpg|250px|thumb|right|Amplitúdóarány és fáziskülönbség frekvencia függése soros RC körben.]] | ||
|} | |} |
A lap 2019. december 6., 11:34-kori változata
Tartalomjegyzék[elrejtés] |
Elméleti összefoglaló
Időben harmonikusan változó jel
Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [1]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy ![]() ![]() ![]() ![]() ![]() ![]() Hasznos még bevezetni a körfrekvenciát ![]() A harmonikusan változó feszültség a komplex síkon egy |
Lineáris áramköri elemek
Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső feszültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás:
![]() Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg ![]() melyből kiszámíthatjuk a rajta eső feszültsége: ![]() Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a |
Egy ![]() ![]() Az időben harmonikusan változó áramot ismét komplex alakban adjuk meg ![]() melyből a tekercs kapcsain mérhető feszültség: ![]() Tehát a feszültség fázisa |
A ![]() ![]() Ezt az összefüggést deriválva és átrendezve a korábbiakhoz hasonló alakú kifejezést kapunk: ![]() hiszen a kondenzátor eltolási árama a töltésváltozással egyenlő. A komplex feszültség-áram összefüggés az alábbi alakot ölti: ![]() Tehát a feszültség fázisa - |
Soros RC kör
Az ábrán látható soros RC körrel vizsgálhatjuk egy ![]() ![]() ![]() Ekkor a kondenzátor fegyverzetein tárolt töltések átáramlanak az ellentétes fegyverzetre, hogy az új egyensúly elérését követően nulla feszültség essen a bemeneten (és a kondenzátoron is). Ezt az áramot például a fenti egyenlet deriválásával számíthatjuk ki: ![]() Tehát az áramkörben folyó időfüggő áram az alábbi differenciálegyenletet elégíti ki: ![]() Az ![]() ahol ![]() |
Megvizsgálhatjuk a soros RC kör harmonikus meghajtásra adott válaszát is. Például a meghajtó ![]() ![]() ![]() ![]() Az impedanciáról tanultakat felhasználva ![]() ![]() |
Az amplitúdók arányát és a fáziskülönbséget az alábbi arány számításával határozhatjuk meg:
![]() Az amplitúdóarányt az alábbi Lorentz görbe adja meg: ![]() Tehát 1/ ![]() A fázisszöget a képzetes és valós rész hányadosa adja meg: ![]() |
Mérési feladatok
1. Feladat A próbapanelen állítsunk össze egy =10 k
ellenállásból és az ismeretlen
kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást.
bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre
=1 kHz frekvenciájú,
=1 V-os szinusz jelet. A bemeneti és a kondenzátoron eső
kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert.
Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek?
2. Feladat Vizsgáljuk tovább a fenti áramkört! A bemeneti pontokra =100 Hz frekvenciájú négyszögjelet kapcsoljunk. Az oszcilloszkóp beállítása után, mentsük el a kimeneti jelet. A kisülési görbékre exponenciális függvényt illesztve határozzuk meg az időállandót, majd számítsuk ki a
kapacitás értékét ezzel a módszerrel is.