„3. Mérés: RC-körök vizsgálata” változatai közötti eltérés
89. sor: | 89. sor: | ||
==Mérési feladatok== | ==Mérési feladatok== | ||
− | '''1. Feladat''' A próbapanelen állítsunk össze egy $R$=10 k$\Omega$ ellenállásból és az ismeretlen $C$ kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. $U_be$ bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre f=1\,kHz frekvenciájú, $V_p$p=1\,V-os szinusz jelet. A bemeneti és a kondenzátoron eső | + | '''1. Feladat''' A próbapanelen állítsunk össze egy $R$=10 k$\Omega$ ellenállásból és az ismeretlen $C$ kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. $U_be$ bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre f=1\,kHz frekvenciájú, $V_p$p=1\,V-os szinusz jelet. A bemeneti és a kondenzátoron eső $U_ki$ kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert. |
− | + | Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen $C$ kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek? | |
− | + | ||
− | + | '''2. Feladat''' Vizsgáljuk tovább a fenti áramkört! A bemeneti pontokra $f$=100 Hz frekvenciájú négyszögjelet kapcsoljunk. Az oszcilloszkóp beállítása után, mentsük el a kimeneti jelet. A kisülési görbékre exponenciális függvényt illesztve határozzuk meg az időállandót, majd számítsuk ki a $C$ kapacitás értékét ezzel a módszerrel is. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen C kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek? | + | |
</wlatex> | </wlatex> |
A lap 2019. november 1., 22:48-kori változata
Tartalomjegyzék |
Elméleti összefoglaló
Időben harmonikusan változó jel
Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [1]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy periodus idővel változó, =1/ frekvenciájú feszültség jel látható. Ha a jel amplitúdója és fázisa , az időfüggést az alábbi alakban adhatjuk meg:
Hasznos még bevezetni a körfrekvenciát =2. Az időbeli változást leíró differenciál egyenletek könnyebb kezeléséhez érdemes bevezetni az alábbi komplex változót, melynek valós része adja a mérhető jelet: A harmonikusan változó feszültség a komplex síkon egy sugarú kört ír le. A komplex számot reprezentáló vektor fázisszöge állandó szögsebességgel fordul körbe. |
Lineáris áramköri elemek
Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső fezsültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás:
Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg melyből kiszámíthatjuk a rajta eső feszültsége: Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a = összefüggéssel számolhatjuk ki. |
Egy induktivitással jellemezhető tekercs esetén a tekercs kapocsain mérhető feszültséget az alábbi képlet adja meg:
Az időben harmonikusan változó áramot ismét komplex alakban adjuk meg melyből a tekercs kapcsain mérhető feszültség: Tehát a feszültség fázisa -vel eltolódik az áramhoz képest, az amplitúdokat pedig a = összefüggéssel számolhatjuk ki. Érdemes bevezetni az ellenálláshoz hasonló fogalmat, az impedanciát. Ez a komplex mennyiség lineáris áramkörökben megadja a feszülség és az áram komplex arányát. Induktivitás esetén =. |
A kapacitással jellemezhető kondenzátor esetén ismert, hogy
Ezt az összefüggést deriválva és átrendezve a korábbiakhoz hasonló alakú kifejezést kapunk: hiszen a kondenzátor eltolási árama a töltésváltozással egyenlő. A komplex feszültség-áram összefüggés az alábbi alakot ölti: Tehát a feszültség fázisa --vel eltolódik az áramhoz képest, az amplitúdokat pedig a = összefüggéssel számolhatjuk ki. A kondenzátorhoz tartozó impedancia =. |
Mérési feladatok
1. Feladat A próbapanelen állítsunk össze egy =10 k ellenállásból és az ismeretlen kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást. bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre f=1\,kHz frekvenciájú, p=1\,V-os szinusz jelet. A bemeneti és a kondenzátoron eső kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert.
Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek?
2. Feladat Vizsgáljuk tovább a fenti áramkört! A bemeneti pontokra =100 Hz frekvenciájú négyszögjelet kapcsoljunk. Az oszcilloszkóp beállítása után, mentsük el a kimeneti jelet. A kisülési görbékre exponenciális függvényt illesztve határozzuk meg az időállandót, majd számítsuk ki a kapacitás értékét ezzel a módszerrel is.